Bài 5. Một người đi xe máy từ A đến B với vận tốc 24km/h. Khi từ B trở về A, người đó chọn con đường khác dễ đi hơn nhưng dài hơn đường cũ 7km và đi với vận tốc 30km/h. Do đó, thời gian về ít hơn thời gian đi là 20 phút. Tính quãng đường AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là quãng đường AB ( đk x > 0 )
quãng đường dài hơn đường cũ là x+6 ( km )
thời gian đi quãng đường AB : \(\frac{x}{30}\) ( h )
thời gian đi quãng đường dài hơn AB : \(\frac{x+6}{36}\) ( h)
do thời gian về ít hơn thời gian đi là 10 phút .=
Ta có phương trình :
\(\frac{x}{30}-\frac{x+6}{36}=\frac{1}{6}\)
\(\Leftrightarrow\frac{6x}{180}-\frac{5.\left(x+6\right)}{180}=\frac{30}{180}\)
\(\Leftrightarrow6x-5.\left(x+6\right)=30\)
\(\Leftrightarrow6x-\left(5x+30\right)=30\)
\(\Leftrightarrow6x-5x-30=30\)
\(\Leftrightarrow x-30=30\)
\(\Leftrightarrow x=60\)
Vậy quãng đường AB là 60 ( km )
quãng đường dài hơn quãng đường AB là 60 + 6 =66 ( km)
Gọi độ dài AB là x
Thời gian đi là x/35
Thời gian về là (x+5)/40
Theo đề, ta có: x/35-(x+5)/40=1/2
=>x/35-x/40-1/8=1/2
=>x/280=1/2+1/8=5/8
=>x=175
Gọi x (km) là quãng đường AB :
ĐK : x > 0
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x+15}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 20 phút nên ta có pt :
\(\dfrac{x}{30}-\dfrac{x+15}{40}=\dfrac{1}{3}\)
\(\Leftrightarrow4x-3\left(x+15\right)=40\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=85\left(N\right)\)
Vậy : ...
Đổi 20 phút=1/3h
Gọi x là độ dài quãng đường AB ( km,x>0)
Thời gian người đó đi từ A -> B là: \(\dfrac{x}{9}\)(h)
Thời gian người đó đi từ B về A với con đường khác là: \(\dfrac{x+6}{12}\)(h)
Vì thời gian trở về ít hơn thời gian đi 1/3h nên ta có phương trình:
\(\dfrac{x}{9}-\dfrac{x+6}{12}=\dfrac{1}{3}\)
<=>\(\dfrac{4x}{36}-\dfrac{3(x+6)}{36}=\dfrac{12}{36}\)
<=> 4x-3x-18=12
<=> x=30(nhận)
Vậy quãng đường AB dài 30km
Gọi độ dài quãng đường lúc đi là x (km) với x>0
Độ dài quãng đường lúc về là: \(x+6\) (km)
Thời gian đi của người đó: \(\dfrac{x}{25}\) giờ
Thời gian về của người đó: \(\dfrac{x+6}{30}\) giờ
Do thời gian về ít hơn thời gian đi là \(10\) phút \(=\dfrac{1}{6}\) giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{11}{30}\)
\(\Leftrightarrow x=55\left(km\right)\)
S (km) | v (km/giờ) | t (giờ) | |
A→B | x | 25km/giờ | \(\dfrac{x}{25}\) |
Quãng đường khác | x+6 | 30km/giờ | \(\dfrac{x+6}{30}\) |
Theo đầu bài ta có phương trình:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow x=55\left(km\right)\)
Vậy quãng đường lúc đi là 55km
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{30}{x}-\dfrac{36}{x+21}=\dfrac{15}{60}=\dfrac{1}{4}\Rightarrow x\approx32,5km\)
Gọi độ dài quãng đường AB là x ( đk x>7)
Theo đề toán ta có: \(\dfrac{x}{24}+\dfrac{x+7}{30}=\dfrac{1}{3}\)
giải nốt :D
Đổi \(20'=\dfrac{1}{3}h\)
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là:
\(\dfrac{x}{24}\)(h)
Thời gian người đó đi từ B về A là:
\(\dfrac{x+7}{30}\)(h)
Vì thời gian về ít hơn thời gian đi là 20 phút nên ta có phương trình:
\(\dfrac{x}{24}-\dfrac{x+7}{30}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{10x}{240}-\dfrac{8\left(x+7\right)}{240}=\dfrac{80}{240}\)
\(\Leftrightarrow10x-8x-56=80\)
\(\Leftrightarrow2x=136\)
hay x=68(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 68km