Cho tam giác ABC vuông tại A ( AB < AC).Tia phân giác của B cắt AC tại M.Kẻ MD vuông góc với BC tại D.a) Chứng minh tam giác BAD cân.b) Chứng minh BM là đường trung trực của đoạn thẳng AD.c) Kéo dài AB và MD cắt ngau tại E. Chứng minh tam giác MEC cân .d) Chứng minh AD // EC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: BA=BD
Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
mà \(\widehat{ABD}=60^0\)
nên ΔBAD đều
b: Ta có: ΔBAM=ΔBDM
nên MA=MD
Ta có: BA=BD
nên B nằm trên đường trung trực của AD\(\left(1\right)\)
Ta có: MA=MD
nên M nằm trên đường trung trực của AD\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BM là đường trung trực của AD
c: Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Suy ra: ΔAME=ΔDMC
Suy ra: ME=MC
hay ΔMEC cân tại M
b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra: BA=BD và IA=ID
Ta có: BA=BD
nên B nằm trên đường trung trực của AD\(\left(1\right)\)
Ta có: IA=ID
nên I nằm trên đường trung trực của AD\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BI là đường trung trực của AD
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
góc ABE=góc DBE
=>ΔBAE=ΔBDE
b: BA=BD
EA=ED
=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ
góc HAD+góc BDA+90 độ
góc BAD=góc BDA
=>góc CAD=góc HAD
=>AD làphân giác của góc HAC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF
a) Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))
Do đó: ΔBAM=ΔBDM(cạnh huyền-góc nhọn)
Suy ra: BA=BD(hai cạnh tương ứng)
Xét ΔABD có BA=BD(cmt)
nên ΔABD cân tại B(Định nghĩa tam giác cân)
b) Ta có: ΔBAM=ΔBDM(cmt)
nên MA=MD(hai cạnh tương ứng)
Ta có: BA=BD(cmt)
nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MA=MD(cmt)
nên M nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BM là đường trung trực của AD(Đpcm)
c) Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD(cmt)
\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔAME=ΔDMC(cạnh góc vuông-góc nhọn kề)
Suy ra: ME=MC(hai cạnh tương ứng)
Xét ΔMEC có ME=MC(cmt)
nên ΔMEC cân tại M(Định nghĩa tam giác cân)
d) Ta có: ΔAME=ΔDMC(cmt)
nên AE=DC(hai cạnh tương ứng)
Ta có: BA+AE=BE(A nằm giữa B và E)
BD+DC=BC(D nằm giữa B và C)
mà BA=BD(cmt)
và AE=DC(cmt)
nên BE=BC
Xét ΔBEC có BE=BC(cmt)
nên ΔBEC cân tại B(Định nghĩa tam giác cân)
hay \(\widehat{BEC}=\dfrac{180^0-\widehat{EBC}}{2}\)(Số đo của một góc ở đáy trong ΔBEC cân tại B)(3)
Ta có: ΔBAD cân tại B(cmt)
\(\Leftrightarrow\widehat{BAD}=\dfrac{180^0-\widehat{ABD}}{2}\)(Số đo của một góc ở đáy trong ΔBDA cân tại B)
hay \(\widehat{BAD}=\dfrac{180^0-\widehat{EBC}}{2}\)(4)
Từ (3) và (4) suy ra \(\widehat{BAD}=\widehat{BEC}\)
mà \(\widehat{BAD}\) và \(\widehat{BEC}\) là hai góc ở vị trí đồng vị
nên AD//EC(Dấu hiệu nhận biết hai đường thẳng song song)
cặc ko bít làm