K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

 

 

\(\dfrac{x}{3}=\dfrac{y}{7}\Rightarrow\dfrac{x}{y}=\dfrac{3}{7}\)

\(\dfrac{x}{y}-1=\dfrac{-5}{19}\Rightarrow\dfrac{x}{y}=\dfrac{14}{19}\)

Vô lí => không có x,y thỏa mãn

a) Ta có: \(\dfrac{x}{3}=\dfrac{y}{7}\)

nên \(\dfrac{x}{y}=\dfrac{3}{7}\)

b) Ta có: \(\dfrac{x}{y-1}=\dfrac{5}{-19}\)

\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y-1}{-19}\)

hay \(\dfrac{x}{5}=\dfrac{1-y}{19}\)

Giải:

a) \(\left(x-1\right)\left(y+2\right)=7\) 

\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

x-1-7-117
y+2-1-771
x-6028
y-3-95-1

Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\) 

b) \(\left(x-2\right)\left(3y+1\right)=17\) 

\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\) 

Ta có bảng giá trị:

x-2-17-1117
3y+1-1-17171
x-151319
y\(\dfrac{-2}{3}\) (loại)-6 (t/m)\(\dfrac{16}{3}\) (loại)0 (t/m)

Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)

30 tháng 6 2021

Ko ghi lại đề nhé 

a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)

\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)

b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)

\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)

\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)

\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)

Bạn tự kết luận hộ mk nha

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

a.

$xy=-21=7.(-3)=(-7).3=3.(-7)=(-3).7=21.(-1)=(-21).1=(-1).21=1(-21)$

Do đó $(x,y)=(7,-3); (-7,3); (3,-7); (-3,7); (21,-1); (-21,1); (-1,21); (1,-21)$

b.

$(x+5)(y-3)=14=1.14=14.1=(-14)(-1)=(-1)(-14)=2.7=7.2=(-2)(-7)=(-7)(-2)$

Do đó:

$(x+5,y-3)=(1,14); (14,1); (-14,-1); (-1,-14); (2,7); (7,2); (-2,-7); (-7,-2)$

Đến đây thì đơn giản rồi.

c.

$x(y-2)=-19$, bạn làm tương tự

d. Tương tự

 

a) Ta có: (x+1)(y-2)=-2

nên x+1; y-2 là các ước của -2

Trường hợp 1:

\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}

b) Ta có: (x+1)(xy-1)=3

nên x+1;xy-1 là các ước của 3

Trường hợp 1: 

\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)

c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vây: (x,y)=(-1;1)

d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)=(0;0)

4 tháng 2 2021

thanks bạn

 

Giải:

a) \(\dfrac{-5}{8}=\dfrac{x}{16}\) 

\(\Rightarrow x=\dfrac{16.-5}{8}=-10\) 

\(\dfrac{3x}{9}=\dfrac{2}{6}\) 

\(\Rightarrow3x=\dfrac{2.9}{6}=3\) 

\(\Rightarrow x=1\)

b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)  

\(\Rightarrow x+3=\dfrac{1.15}{3}=5\) 

\(\Rightarrow x=2\)

\(\dfrac{6}{2x+1}=\dfrac{2}{7}\) 

\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\) 

\(\Rightarrow x=10\)

c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\) 

\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\) 

\(\Rightarrow x=0\) 

\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow y=\dfrac{-12.24}{18}=-16\) 

 \(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\) 

\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\) 

\(\Rightarrow x=-29\) 

\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\) 

d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\) 

\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\) 

\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\) 

\(\Rightarrow x\in\left\{-3;-2;-1\right\}\) 

\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\) 

\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\) 

\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\) 

\(\Rightarrow x\in\left\{-1;0;1;2\right\}\) 

e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\) 

\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\) 

\(\Rightarrow5x+230=100x+40\) 

\(\Rightarrow5x-100x=40-230\) 

\(\Rightarrow-95x=-190\) 

\(\Rightarrow x=-190:-95\) 

\(\Rightarrow x=2\) 

\(y\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y^2+5=86\) 

\(\Rightarrow y^2=86-5\) 

\(\Rightarrow y^2=81\) 

\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\) 

Chúc bạn học tốt!

9 tháng 2 2022

1:

a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)

b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)

nên 2 p/s ko bằng nhau 

9 tháng 2 2022

thật luôn

18 tháng 2 2017

a, x=7 y=3

b, x=-13 y=11

c, x=5 y=-18

 h tôi đi

18 tháng 2 2017

\(a,\frac{x}{4}=\frac{7}{x}\)

\(\Rightarrow x\cdot y=7\cdot4=\)

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

10 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  

`#3107.101117`

a)

`x \div y \div z = 4 \div 3 \div 9`

`=> x/4 = y/3 = z/9`

`=> x/4 = (3y)/9 = (4z)/36`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`

`=> x/4 = y/3 = z/9 = 2`

`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`

Vậy, `x = 8; y = 6; z = 18`

c)

\(x \div y \div z = 1 \div 2 \div 3\)

`=> x/1 = y/2 = z/3`

`=> (4x)/4 = (3y)/6 = (2z)/6`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`

`=> x/1 = y/2 = z/3 = 9`

`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`

Vậy, `x = 9; y = 18; z = 27`

Các câu còn lại cậu làm tương tự nhé.