Câu 1:
a) Chứng tỏ rằng số: \(\frac{10^{1995}+8}{9}\)là một số tự nhiên
b) Tìm 2 số tự nhiên có tổng bằng 432 và ƯCLN của chúng là 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) Cách 1: Sử dụng đồng dư
Ta có: \(\frac{10^{1995}+8}{9}\)
Mặt khác: \(10^{1995}\equiv1\)(mod 9)
Do đó: \(\frac{10^{1995}+8}{9}\equiv\frac{1+8}{9}⋮9\)
Do đó số trên là một số tự nhiên
Cách 2:
Ta có: \(10^{1995}=1000....000\)( 1995 con số 0)
Suy ra: \(10^{1995}+8=1000....008\)
Mặt khác tổng các chữ số của số \(1000....008\)là 1+8=9
=> \(\left(10^{1995}+8\right)⋮9\)
Vậy ...............
a, A= 10^2015+8/9
=1000...08/9 ( 2015 chữ số 0)
Tử có tổng các chữ số bằng 1+8=9 chia hết cho 9
<=>A là 1 số tự nhiên
là siêu trộm mà sao ko trộm kiến thức đi mà cứ phải đi hỏi thế
Gọi 2 số tự nhiên cần tìm là a và b
Vì \(ƯCLN\left(a,b\right)=36\Rightarrow\hept{\begin{cases}a=36.m\\b=36.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 36.m, b = 36.n vào a + b = 432, ta có:
36.m + 36.n = 432
=> 36.(m + n) = 432
=> m + n = 432 : 36
=> m + n = 12
Vì m và n nguyên tố cùng nhau
=> Ta có bảng giá trị:
m | 1 | 11 | 5 | 7 |
n | 11 | 1 | 7 | 5 |
a | 36 | 396 | 180 | 252 |
b | 396 | 36 | 252 | 180 |
Vậy các cặp (a,b) cần tìm là:
(36; 396); (396; 36); (180; 252); (252; 180).
Gọi 2 số tự nhiên cần tìm là a và b, ta có:
a = 36 ; a = 180
b= 396 ; b = 252
a) Tổng các chữ số của tử số chia hết cho 9 nên số đó chia hết cho 9, là stn
b) Gọi 2 số cần tìm là a và b ( a<b)
ƯCLN(a,b)=36 nên a=36k, b=36l ( UCLN(k,l)=1)
a+b=36k+36l=36(k+l)=423
k+l=432:36=12
Tự kẻ bảng rùi làm nốt nha
a) ta có : 101995 +8 = 10000.....000 + 8 ( có 1995 chữ số 0 ) chia hết cho 9
=> 1000........0008 có tổng các chữ số là 9
mà 9 chia hết cho 9
vậy 101995 + 8 chia hết cho 9 và là một số tự nhiên
b) đặt hai số cần tìm là : a = 36.m và b = 36.n với UCLN( m;n) = 1
ta có : a + b = 432 => 36.m + 36.n = 432
=> 36.( m + n ) = 432 => m +n = 12
suy ra :
vậy :