K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2021

1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)

\(\Leftrightarrow x^2-x-m=0\) ( I )

Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)

- Để 2 hàm số cắt nhau tại hai điểm phân biệt

<=> PT ( I ) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m>-\dfrac{1}{4}\)

2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)

TH1 : \(x_1-x_2=3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

TH2 : \(x_1-x_2=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

Vậy m = 2 thỏa mãn yêu cầu đề bài .

5 tháng 5 2021

theo tôi bạn có thể tách (x1-x2)=(x1+x2)2-4x1x2 cho nhanh

 

27 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+2mx-3m=-2x+3\)

\(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\)

Hai đồ thị cắt nhau tại hai điểm phân biệt A, B khi phương trình \(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2+5m+4>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -4\end{matrix}\right.\)

Phương trình có hai nghiệm phân biệt \(x=-m-1\pm\sqrt{m^2+5m+4}\)

\(x=-m-1+\sqrt{m^2+5m+4}\Rightarrow y=2m+5-2\sqrt{m^2+5m+4}\)

\(\Rightarrow A\left(-m-1+\sqrt{m^2+5m+4};2m+5-2\sqrt{m^2+5m+4}\right)\)

\(x=-m-1-\sqrt{m^2+5m+4}\Rightarrow y=2m+5+2\sqrt{m^2+5m+4}\)

\(\Rightarrow B\left(-m-1-\sqrt{m^2+5m+4};2m+5+2\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-2\sqrt{m^2+5m+4};4\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow AB=\sqrt{4\left(m^2+5m+4\right)+16\left(m^2+5m+4\right)}=2\sqrt{5\left(m^2+5m+4\right)}=4\sqrt{5}\)

\(\Leftrightarrow\sqrt{m^2+5m+4}=2\)

\(\Leftrightarrow m^2+5m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-5\left(tm\right)\end{matrix}\right.\)

27 tháng 12 2020

Xét phương trình hoành độ giao điểm của (d): y = -2x + 3 và 

(P) : x2 + 2mx - 3m = 0

x2 + 2mx - 3m = -2x + 3 

⇔ x2 + 2(m+1) - 3(m+1) = 0 (*)

Để (d) cắt (P) taị 2 điểm phân biệt thì (*) có hai nghiệm phân biệt. Khi đó Δ' > 0 

⇔ (m+1)2 + 3(m+1) > 0

⇔ (m+1)(m+4) > 0

⇔ m ∈ R \ (-4 ; -1) (!)

Do A,B là giao điểm của (d) và (P) nên hoành độ của chúng là nghiệm của (*)

Theo định lí Viet : \(\left\{{}\begin{matrix}x_A+x_B=-2m-2=-2\left(m+1\right)\\x_A.x_B=-3m-3=-3\left(m+1\right)\end{matrix}\right.\) 

Do A,B ∈ d nên hoành độ và tung độ của chúng thỏa mãn

y = -2x + 3 hay \(\left\{{}\begin{matrix}y_A=-2x_A+3\\y_B=-2x_B+3\end{matrix}\right.\)

Để giải được bài này thì mình sẽ sử dụng công thức tính độ dài của vecto AB (nếu bạn chưa học đến thì xin lỗi)

AB = |\(\overrightarrow{AB}\)| = 4\(\sqrt{5}\)

⇒ (xA - xB)2 + (yA - yB)2 = 80

⇒ (xA - xB)2 + (-2xA + 2xB)2 = 80

Sau đó bạn thay m vào rồi biến đổi, kết quả ta được

(m+1)(m+4) = 4 \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)(thỏa mãn (!) )

Vậy tập hợp các giá trị của m thỏa mãn yêu cầu bài toán là 

M = {0 ; -5}

 

a: Để hàm số đồng biến thì 2m-6>0

hay m>3

b: Phương trình hoành độ giao điểm là:

\(x^2-\left(2m-6\right)x-m+9=0\)

\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)

\(=4m^2-24m+36+4m-36\)

=4m2-20m

Để (P) tiếp xúc với (d) thì 4m(m-5)=0

=>m=0 hoặc m=5

14 tháng 4 2022

sao bạn không giải câu c

15 tháng 2 2018

Đáp án B

4 tháng 4 2021

b, xét pt hoành độ giao điểm:

-x²=4x+m

=> x²+4x+m=0

a=1.  b= 4.  c=m

Để pt có 2 No pb=> ∆>0

<=>4²-4×1×m>0

<=>16-4m>0

<=> -4m>-16

<=> m<16÷4=4

Vậy m=4 pt có 2No pb

13 tháng 9 2017

Xét phương trình hoành độ giao điểm:

Để đường thẳng d cắt (C) tại 2 điểm phân biệt ⇔ p t *  có 2 nghiệm phân biệt khác 1.

 

Gọi x A ;   x B  là 2 nghiệm phân biệt của (*), áp dụng định lí Vi-ét ta có: 

 

Chọn D.

Câu 2: 

Thay x=0 và y=-3 vào (d), ta được:

m+2=-3

hay m=-5

9 tháng 4 2017

chủ yếu là làm kĩ câu 2 ạ. Cám ơn ạ

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)