K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)\left(x^3+y^3\right)}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}\)

\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

7 tháng 2 2021

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}=\dfrac{x^2-xy+y^2}{x^3+xy^2-x^2y-y^3}\)

14 tháng 12 2018

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)

\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)

\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)

\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)

=x+y-z

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

22 tháng 2 2020

tôi cũng cung thiên yết nè nhưng lại là cậu bé mà thiên yết hợp với cung gì nhất vậy add friend nha

29 tháng 10 2020

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)( ĐKXĐ tự tìm nhé *)

\(=\frac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\frac{\left(x^3+y^3\right)^2}{x\left[\left(x^3\right)^2-\left(y^3\right)^2\right]}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^3+y^3}{x\left(x^3-y^3\right)}=\frac{x^3+y^3}{x^4-xy^3}\)

20 tháng 11 2018

\(\frac{x^2-5x+6}{x^2-2x}=\frac{x^2-2x-3x+6}{x.\left(x-2\right)}=\frac{x.\left(x-2\right)-3.\left(x-2\right)}{x.\left(x-2\right)}\)

\(=\frac{\left(x-3\right).\left(x-2\right)}{x.\left(x-2\right)}=\frac{x-3}{x}\)

20 tháng 11 2018

\(a,\frac{x^2-xy+x-y}{x^2-xy-x+y}=\frac{x.\left(x-y\right)-\left(x-y\right)}{x.\left(x+y\right)-\left(x+y\right)}\)

                                      \(=\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\frac{x-y}{x+y}\)

2 tháng 12 2017

Điều kiện \(x\ne\pm3;y\ne-2\):

 \(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)

=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)

=> P=0 (với mọi x khác 3, -3 và y khác -2)

b: \(=\dfrac{\left(x+3\right)^2-y^2}{2\left(x-y+3\right)}\)

\(=\dfrac{\left(x+3+y\right)\left(x+3-y\right)}{2\left(x-y+3\right)}=\dfrac{x+y+3}{2}\)

8 tháng 8 2017

a) \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)

\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

b) \(\dfrac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x-2\right)}{x+2}\)

c) \(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\dfrac{x}{x+y}\)

d) \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\)

\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)

\(=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a-b+c\right)\left(a+b+c\right)}\)

\(=\dfrac{a+b-c}{a-b+c}\)

e) \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\dfrac{2x^2-x-15}{3x^2-10x+3}\)

\(=\dfrac{\left(x-3\right)\left(2x+5\right)}{\left(x-3\right)\left(3x-1\right)}\)

\(=\dfrac{2x+5}{3x-1}\)

8 tháng 8 2017

You're welcome :)) :)) :)) :)) :)) :)) :))