Tìm một số có hai chữ số biết rằng hiệu của ba lần chữ số hàng chục và hai lần chữ số hàng đơn vị là 11. Nếu đổi chỗ chữ số hàng chục và hàng đơn vị cho nhau thì sẽ được số mới nhỏ hơn số cũ là 18 đơn vị. mọi người giúp em với ạ em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là ab
tổng của chữ số hàng chục và hai lần chữ số hàng đơn vị là 10
=> b+2a=10
Nếu đổi chỗ hai chữ số cho nhau thì sẽ được một số mới nhở hơn 18 đơn vị
suy ra ab-ba=18
=>10a+b-10b-a=18
=>9a-9b=18 => a-b=2
giải hệ
suy ra a=4 và b=2
suy ra số cần tìm là 42
Gọi số cần tìm là ab (a,b khác 0)
Ta có hệ pt:
{2a+b=10
ab−ba=18
⇒{2a+b=10
10a+b−(10b+a)=18
⇒{b=10−2a
9a−9b=18
⇒{b=10−2a
a−b=2
⇒{b=10−2a
a−10+2a=2
⇒{b=10−2a
a=4
⇒{b=2
a=4
Vậy số cần tìm là 42
⇔ 9 a - 9 b = 18
⇔ 27 a = 108 ⇔ a = 4
Suy ra b = 10 - 2.4 = 2 nên a + b = 4 + 2 = 6
Đáp án cần chọn là C
Gọi số đó là \(\overline{ab}\left(0< a< 9,0\le b< 9;a,b\in N\right)\)
Theo đề,ta có: \(\left\{{}\begin{matrix}2a+3b=24\\\overline{ba}-\overline{ab}=27\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a+3b=24\\9b-9a=27\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a+3b=24\\b-a=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a+3b=24\left(1\right)\\2b-2a=6\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\Leftrightarrow5b=30\Rightarrow b=6\Rightarrow a=6-3=3\Rightarrow\overline{ab}=36\)
gọi số cần tìm là ab
tổng của chữ số hàng chục và hai lần chữ số hàng đơn vị là 12
=> a+2b=12
Nếu đổi chỗ hai chữ số cho nhau thì sẽ được một số mới lớn hơn số ban đầu 27 đơn vị
suy ra ba-ab=27
=>10b+a-10a-b=27
=>-9a+9b=27
giải hệ
suy ra a=2 và b=5
suy ra số cần tìm là 25
Ta có các số tự nhiên có 2 chữ số mà chữ só hàng đơn vị gấp ba lần chữ số hàng chục là 39;26;13
ta lần lượt thử các số
viết ngược của 13 là 31, lớn hơn số ban đầu : 31-13=18 (loại)
viết ngược của 26 là 62, lớn hơn số ban đầu :62-26=36 (loại)
viết ngược của 39 là 93, lớn hơn số ban đầu :93-39=54 (thỏa mãn)
Vậy số cần tìm là 39
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: b=3a và 10b+a-10a-b=18
=>3a-b=0 và -9a+9b=18
=>a=1 và b=3
Lời giải:
Gọi số cần tìm là $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{cba}-\overline{abc}=792$
$(100c+10b+a)-(100a+10b+c)=792$
$99c-99a=792$
$99(c-a)=792$
$c-a=8$
$c=a+8> 0+8=8(1)$
Mặt khác:
$c=3b$
$\Rightarrow c\vdots 3(2)$
Từ $(1); (2)\Rightarrow c=9$.
$a=c-8=9-8=1$
$b=c:3=9:3=3$
Vậy số cần tìm là $139$
Gọi số cần tìm là \(\overline{xy}\)
+) Do hiệu của 3 lần chữ số hàng chục với 2 lần chữ số hàng đơn vị là 11 nên ta có phương trình \(3x-2y=11\left(1\right)\)
+) Lại có, nếu đổi chữ số hàng chục và hàng đơn vị cho nhau, ta sẽ được 1 số mới nhỏ hơn số cũ 18 đơn vị, hay
\(\overline{xy}-\overline{yx}=18\Leftrightarrow\left(10x+y\right)-\left(10y+x\right)=18\Leftrightarrow9x-9y=18\Leftrightarrow x-y=2\left(2\right)\)
Từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x-2y=11\\x-y=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-2y=11\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=5\end{matrix}\right.\)
Vậy số cần tìm là 75
Gọi số cần tìm là \(\overline{ab}\) (0<a<10; 0<b<10) => 3a - 2b = 11 (1)
Khi đổi chỗ hai chữ số cho nhau được số mới là \(\overline{ba}\)
Do số mới nhỏ hơn số cũ 18 đơn vị => \(\overline{ab}\) - \(\overline{ba}\) = 18
⇔ 10a + b - 10b - a = 18
⇔ 9a - 9b = 18 (2)
Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}3a-2b=11\\9a-9b=18\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}9a-6b=33\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3b=-15\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\) (tm)
Vậy số cần tìm là 75