Cho a, b, c > 0 thỏa mãn điều kiện abc = 1. Tìm GTNN của:
\(T=\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{b^2c+b^2a}+\dfrac{ab}{c^2a+c^2b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
\(P=\dfrac{bc}{\dfrac{a^2bc}{c}+\dfrac{a^2bc}{b}}+\dfrac{ca}{\dfrac{b^2ac}{a}+\dfrac{b^2ac}{c}}+\dfrac{ab}{\dfrac{c^2ab}{b}+\dfrac{c^2ab}{a}}=\dfrac{\left(bc\right)^2}{a^2b^2c+a^2bc^2}+\dfrac{\left(ca\right)^2}{b^2a^2c+b^2ac^2}+\dfrac{\left(ab\right)^2}{c^2a^2b+c^2ab^2}=\dfrac{\left(bc\right)^2}{ab+ac}+\dfrac{\left(ca\right)^2}{ba+bc}+\dfrac{\left(ab\right)^2}{ca+cb}\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\ge\dfrac{3\sqrt[3]{\left(abc\right)^2}}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1
\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (do a,b,c là các số dương)
Áp dụng BĐT Bunhiacopxki dạng phân thức:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{6^2}{a+2b+3c}\)
\(\Rightarrow\dfrac{36}{a+2b+3c}\le\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\left(1\right)\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{36}{b+2c+3a}\le\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\left(2\right)\\\dfrac{36}{c+2a+3b}\le\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\left(3\right)\end{matrix}\right.\)
Lấy (1) + (2) + (3) ta được:
\(36F\le6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=6.3=18\)
\(\Rightarrow F\le\dfrac{1}{2}\)
MaxF=1/2 khi \(a=b=c=1\)
Theo đề ra, ta có:
\(a^2+b^2+c^2\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Theo BĐT Cô-si:
\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)
Ta đặt \(a^2+b^2+c^2=k\)
Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Vì thế nên \(k\ge\dfrac{1}{3}\)
Khi đấy:
\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)
\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).
Đặt \(\left(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\right)=\left(x,y,z\right)\) với x, y, z > 0 thì ta có \(x+y+z=1\).
Đặt biểu thức ở VT là A. Ta có:
\(A=\sqrt{\dfrac{b^2+2a^2}{a^2b^2}}+\sqrt{\dfrac{c^2+2b^2}{b^2c^2}}+\sqrt{\dfrac{a^2+2c^2}{c^2a^2}}=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\).
Ta có bất đẳng thức \(\sqrt{a_1^2+a_2^2}+\sqrt{a_3^2+a_4^2}\ge\sqrt{\left(a_1+a_3\right)^2+\left(a_2+a_4\right)^2}\).
Đây là bđt Mincopxki cho hai bộ số thực và dễ dàng cm bằng biến đổi tương đương.
Do đó \(A\ge\sqrt{\left(x+y\right)^2+\left(\sqrt{2}y+\sqrt{2}z\right)^2}+\sqrt{z^2+2x^2}\ge\sqrt{\left(x+y+z\right)^2+\left(\sqrt{2}y+\sqrt{2}z+\sqrt{2}x\right)^2}=\sqrt{1+2}=\sqrt{3}=VP\).
Đẳng thức xảy ra khi a = b = c = 3.
Vậy...
Tương tự: \(GT\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
\(VT=\dfrac{\sqrt{a^2+a^2+b^2}}{ab}+\dfrac{\sqrt{b^2+b^2+c^2}}{bc}+\dfrac{\sqrt{c^2+a^2+a^2}}{ca}\)
\(VT\ge\dfrac{\sqrt{\dfrac{1}{3}\left(a+a+b\right)^2}}{ab}+\dfrac{\sqrt{\dfrac{1}{3}\left(b+b+c\right)^2}}{bc}+\dfrac{\sqrt{\dfrac{1}{3}\left(c+c+a\right)^2}}{ca}\)
\(VT\ge\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
https://hoc24.vn/hoi-dap/question/562943.html
Em xem ở đây nhé.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(T=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\geq \frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}{2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)
\(\geq \frac{1}{2}.3\sqrt[3]{\frac{1}{abc}}=\frac{3}{2}\) (theo BĐT AM-GM)
Vậy $T_{\min}=\frac{3}{2}$.
Giá trị này đạt tại $a=b=c=1$