Cho hình thang vuông ABCD (góc A, D vuông). Gọi E là trung điểm của AD. Kẻ AH vuông góc với BE, DI vuông góc với CE, K là giao điểm của AH và DI.
a) Chứng minh BHIC là tứ giác nội tiếp.
b) Chứng minh EK $\bot$ BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình thang ABCD vuông tại A và D. Gọi E là trung điểm AD. Kẻ AH vuông góc với EB tại H, DI vuông góc với CE tại I. Chứng minh tứ giác BHIC nội tiếp đường tròn.VÀ chứng minh EK vuông góc vs BC
a: Xét tứ giác ADHB có
\(\widehat{DAB}=\widehat{ADH}=\widehat{BHD}=90^0\)
Do đó: ADHB là hình chữ nhật
mà AB=AD
nên ADHB là hình vuông
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
góc AGD=1/2*180=90 độ
=>GD vuông góc AH
=>GD//BC
b: ABHE nội tiếp
=>góc EHC=góc BAD
mà góc BAD=góc DCB
nên góc EHC=góc DCB
=>EH//CD
góc ACD=1/2*180=90 độ
=>AC vuông góc CD
=>EH vuông góc AC tại N
=>góc ANH=90 độ
a: Vì góc AEB=góc AHB=90 độ
=>AHBE nội tiếp
góc AGD=1/2*180=90 độ
=>AG vuông góc GD
=>GD//BC
b:
Xét ΔAHB vuông tại H và ΔACD vuông tạiC có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
=>góc BAH=góc DAC
góc NAH+góc NHA
=góc ABE+góc BAE=90 độ
=>ΔAHN vuông tại N
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
a: Xét ΔACE có
CD là đường trung tuyến
CD là đường cao
CD=AE/2
Do đó: ΔACE vuông cân tại C
a) Dựa vào dấu hiệu nhận biết ở bài 2, chứng minh được EH.EB = EI.EC (hệ thức lượng trong tam giác vuông).
b) Gọi F là giao điểm của Ek và BC.