K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Ta có: \(\Delta ABH\) vuông tại \(H\)\(\widehat{B}=45^0\)

\(\Rightarrow\).\(\Delta ABH\) vuông cân tại \(H\) \(\Rightarrow AH=BH=\dfrac{AB}{\sqrt{2}}=\dfrac{\sqrt{8}}{\sqrt{2}}=2\).

Lại có: \(AH^2+HC^2=AC^2\\ \Rightarrow CH=\sqrt{AC^2-AH^2}=\sqrt{13-4}=3\)

\(\Rightarrow BC=BH+HC=2+3=5\).

Xét ΔABH vuông tại H có \(\widehat{B}=45^0\)(gt)

nên ΔABH vuông cân tại H(Dấu hiệu nhận biết tam giác vuông cân)

\(\Leftrightarrow AH=BH\)(hai cạnh bên)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow2\cdot AH^2=\left(\sqrt{8}\right)^2=8\)

\(\Leftrightarrow AH^2=4\)

hay AH=2(cm)

Vậy: AH=2cm

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

8 tháng 1 2019

tui là Nhóm Winx là mãi mãi đây

tui chưa học tam giác cân nha

đừng giải theo kiểu đó

làm ơn!!

8 tháng 1 2019

CTV là gì ạaaaaaaa

21 tháng 5 2019

ta có ab\(^2\)+ ac\(^2\) =  90 + 160

                                =250

lại có bc\(^2\) =250

\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )

\(\Rightarrow\)tam giác abc vuông tại a

\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)

\(\tan c\)\(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)

\(\widehat{b}\)\(\approx\) 53.1

\(\widehat{c}\) \(\approx\) 36.9

áp dụng htl vào tam giác abc vuông tại a có

ah * bc = ab * ac

\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)

áp dụng đ/lí pytago vào tam giác ahb vuông tại h có

bh\(^2\)= ab\(^2\)- ah\(^2\)=324

\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)

áp dụng đ/lí pytago vào tam giác ahc vuông tại h có

ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024

\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)

NV
18 tháng 7 2021

Kẻ đường cao BD (D thuộc AC)

Trong tam giác vuông ABD:

\(cosA=\dfrac{AD}{AB}\Rightarrow AD=AB.cosA=12.cos30^0=6\sqrt{3}\)

\(sinA=\dfrac{BD}{AB}\Rightarrow BD=AB.sinA=12.sin30^0=6\)

\(\Rightarrow CD=AC-AD=8\)

Áp dụng định lý Pitago cho tam giác vuông BCD:

\(BC=\sqrt{BD^2+CD^2}=10\left(cm\right)\)

NV
18 tháng 7 2021

undefined