K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 1 2021

\(x-y-z+3=0\Leftrightarrow x=y+z-3\)

\(x^2-y^2-z^2=\left(y+z-3\right)^2-y^2-z^2=y^2+z^2+9+2yz-6y-6z-y^2-z^2\)

\(=2yz-6y-6z+9=1\)

\(\Leftrightarrow yz-3y-3z+4=0\)

\(\Leftrightarrow\left(y-3\right)\left(z-3\right)=5=1.5=\left(-1\right).\left(-5\right)\)

Xét bảng: 

y-315-1-5
z-351-5-1
y482-2
z84-22
x99-3-3
NV
18 tháng 4 2021

Trừ vế cho vế:

\(xy+z-\left(x+yz\right)=1\)

\(\Leftrightarrow x\left(y-1\right)-z\left(y-1\right)=1\)

\(\Leftrightarrow\left(x-z\right)\left(y-1\right)=1\)

Do \(y\) nguyên dương \(\Rightarrow y\ge1\Rightarrow y-1\ge0\Rightarrow x-z>0\)

\(\Rightarrow\left\{{}\begin{matrix}x-z=1\\y-1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\z=x-1\end{matrix}\right.\)

Thế vào \(x+yz=2020\)

\(\Rightarrow x+2\left(x-1\right)=2020\)

\(\Leftrightarrow3x=2022\Rightarrow x=674\Rightarrow z=673\)

Vậy \(\left(x;y;z\right)=\left(674;673;2\right)\)

3 tháng 2 2021

Tham khảo :

Câu hỏi của Cô Gái Mùa Đông - Toán lớp 8 - Học trực tuyến OLM

15 tháng 1 2017

x=10 ; y=1; z=-1

15 tháng 1 2017

x=9; y=1; z=20, nãy nhầm

vui

8 tháng 7 2015

Gọi 3 số nguyên tố cần tìm là x,y,z ta có:

     Cho x là số bằng 10% so với tổng 3 số cần tìm thì x=(x+y+z).10% = (x+y+z)/10

=> 10x= x+y+z

=> x+y+z là 1 số chẵn

=> 1 trong 3 số là số chẵn

=> Số nguyên tố chẵn duy nhất là 2, vậy 1 trong 3 số x,y,z là 2

10x = x+y+z nên 10x-x=y+z hay 9x=y+z

 Vì y+z là số chẳn nếu y,z khác 2 nên x = 2

=> 18=y+z => {y;z}={5;13};{13;5};{7;11};{11;7}

=> y+z = 1 số chẵn + 1 số lẻ = 1 số lẻ.

=> Không tìm được x,y,z 

15 tháng 1

sos

10 tháng 6 2019

Em làm cô vui lòng xem giúp em ạ

Có: \(x,y,z>0\)

Nên: \(7^y>1\)

Mà \(7^y+2^z=2^x+1\)(1)

\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)

Xét TH1: y lẻ

Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)

\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)

Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)

\(\Leftrightarrow7^y-1\equiv2\)(mod 4)

Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)

Thay vào PT: \(2^x-2=7^y-1\)

\(\Leftrightarrow2^x=7^y+1\)

\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)

\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)

Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)

Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)

TH2: Khi y chẵn:

\(2^z\left(2^{x-z}-1\right)=7^y-1\)

Vì y chẵn nên: 

\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)

Vì: \(2^{x-z}-1\equiv1\)(mod 2)

Nên: \(2^z=16\Rightarrow z=4\)

Thế vào: 

\(2^x+1=7^y+16\)

\(\Leftrightarrow2^x=7^y+15\)

\(\Leftrightarrow2^x=7^y+7+8\)

\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)

\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)

\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)

Vì S chia hết cho 8

nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)

\(\Rightarrow y=2\)

Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)

Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)

10 tháng 6 2019

\(3\)

\(1\)

\(1\)