K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

A B O M C D E F H G

1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.

Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))

Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM

Vậy thì tứ giác ACEM là hình thang cân (đpcm).

2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB

Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).

3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)

Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG

Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM

Theo mối quan hệ giữa đường kính và dây ta có: 

\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)

Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).

Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).

21 tháng 1 2016

ACEM là hình thang cân => AE = CM

CD nhỏ hơn hoặc = 1/2 AE

dấu =  <=> C đx với M wa O

21 tháng 1 2016

chưa, câu a nghĩ mãi chẳng làm dc

25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

11 tháng 2 2022

O A B M C K N H I D

a) Xét đường tròn (O) đường kính AB có \(\widehat{ANB}=\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn) => AM ⊥ MB; BN ⊥ AN hay AM ⊥ BC; BC ⊥ AC

Xét ΔABC có 2 đường cao AM, BN cắt nhau tại H => H là trực tâm ΔABC => CH ⊥ AB. Mà HK ⊥ AB (gt) => CH ≡ HK hay C, H, K thẳng hàng

b) Gọi giao điểm của NK với đường tròn (O) là D

ΔCNM ~ ΔCBA (c.g.c) => \(\widehat{CNM}=\widehat{ABC}\) (2 góc tương ứng)

ΔANK ~ ΔABC (c.g.c) => \(\widehat{ANK}=\widehat{ABC}\) (2 góc tương ứng)

=> \(\widehat{CNM}=\widehat{ANK}\) => \(90^o-\widehat{CNM}=90^o-\widehat{ANK}\) => \(\widehat{BNM}=\widehat{BND}\)

Xét đường tròn (O) có \(\widehat{BNM}=\widehat{BND}\) => \(\stackrel\frown{BM}=\stackrel\frown{BD}\) => B là điểm chính giữa cung MD

Do B, M cố định => D cố định => NK luôn đi qua điểm D cố định

c) Xét tứ giác HKBM có \(\widehat{HKB}=\widehat{HMB}=90^o\) => Tứ giác HKBM nội tiếp

=> AH.AM = AK.AB

Tương tự ta có BH.BN = BK.AB

=> AH.AM + BH.BN = AK.AB + BK.AB = AB(AK + BK) = AB2

Do AB không đổi nên AH.AM + BH.BN không đổi

d) CMTT câu b ta có \(\widehat{NMH}=\widehat{IMH}\) => MH là phân giác trong tại M của tam giác MNI

=> \(\dfrac{IH}{NH}=\dfrac{IM}{MN}\) (tính chất đường phân giác)

AM ⊥ MB (cmt) => MB là phân giác ngoài tại M của tam giác MNI

=> \(\dfrac{BI}{BN}=\dfrac{IM}{MN}\) (tính chất đường phân giác)

=> \(\dfrac{IH}{NH}=\dfrac{IB}{BN}\left(=\dfrac{IM}{MN}\right)\) => IH.BN = NH.IB

 

OB=OC

MB=MC

=>OM là trung trực của BC

=>OM vuông góc BC tại I

góc CHO+góc CIO=180 độ

=>CHOI nội tiếp