K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

Ta có :

\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)

\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)

\(\Leftrightarrow A>B\)

A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)

Ta có: 

\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)

\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)

\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)

Từ 3 điều trên suy ra : A < B

26 tháng 2 2018

Ta có : 

\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì : 

\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

26 tháng 2 2018

Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)

                  \(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

    \(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

   \(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)

hay A > B

Vậy A > B 

14 tháng 2 2016

sẽ bằng nhau 

14 tháng 2 2016

câu hỏi tương tự

30 tháng 1 2023

Ta có :

�=20092010−220092011−2<1

⇔�<20092010−2+201120092011−2+2011=20092010+200920092011+2009=2009(20092009+1)2009(20092010+1)=20092009+120092010+1=�

⇔�>�

26 tháng 2 2018

\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)

\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)

\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)

Hay A > B

23 tháng 12 2018

bằng nhau bạn nhé

12 tháng 4 2017

Bạn Edogawa giải thích rõ hơn cho mình hiểu được không?

12 tháng 4 2017

dễ quá cái này so sánh B với 1 sau đó suy ra B< B- thêm tử và mẫu 2011

15 tháng 3 2017

A=\(\dfrac{2009^{2010}+1}{2009^{2009}+1}\)

2009A=\(\dfrac{(2009^{2010}+1)+0}{2009^{2010}+1}\)

= 1+\(\dfrac{0}{2009^{2010}+1}\)= 1+0 =1

B=\(\dfrac{2009^{2011}-2}{2009^{2010}-2}\)

2009B=\(\dfrac{2009^{2011}-1}{2009^{2011}-2009}\)

=\(\dfrac{(2009^{2011}-1)-0}{2009^{2011}-2009}\)

= \(1-\dfrac{0}{2009^{2011}-2009}\)

=1-0= 1

Vì 1=1\(\Rightarrow A=B\)

16 tháng 4 2017

Ta có : A = 2009^2010+1/2009^2009+1

Suy ra: 1/2009 A = 1 - 2008/2009^2010+2009 (1)

Lại có:B = 2009^2011 - 2 / 2009^2010 - 2

Suy ra : 1/2009 B = 1 + 4016/2009^2011-4018 (2)

Vì 1 - 2008/2009^2010+2009 < 1 + 4016/2009^2011-4018 (3)

Từ (1);(2) và (3) suy ra : A<B

4 tháng 6 2017

Ta có :

\(N=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)

\(=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=M\)

Vậy \(M>N\)

4 tháng 6 2017

Ta có: \(B< 1\)

\(\Rightarrow B< \frac{2009^{2010}-2+3}{2009^{2011}-2+3}=\frac{2009^{2010}+1}{2009^{2011}+1}\left(1\right)\)

Mà \(\frac{2009^{2010}+1}{2009^{2011}+1}< 1\)

\(\Rightarrow\frac{2009^{2010}+1}{2009^{2011}+1}< \frac{2009^{2010}+1+2008}{2009^{2011}+1+2008}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}=A\left(2\right)\)

Từ (1) và (2) suy ra A > B