K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

OA là một phần đường kính

CD là dây(gt)

OA⊥CD tại H(gt)

Do đó: H là trung điểm của CD(Định lí đường kính vuông góc với dây)

Xét tứ giác OCAD có 

H là trung điểm của đường chéo CD(cmt)

H là trung điểm của đường chéo OA(gt)

Do đó: OCAD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành OCAD có OC=OD(=R)

nên OCAD là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Ta có: OCAD là hình thoi(cmt)

nên OC=CA=AD=OD(Các cạnh trong hình thoi OCAD)

Ta có: OC=OA(=R)

mà OC=CA(cmt)

nên OC=CA=OA

Xét ΔOCA có OC=CA=OA(cmt)

nên ΔOCA đều(Dấu hiệu nhận biết tam giác đều)

\(\widehat{COA}=60^0\)(Số đo của một góc trong ΔOCA đều)

Ta có: OCAD là hình thoi(cmt)

nên OA là tia phân giác của \(\widehat{COD}\)(Tính chất hình thoi)

\(\Rightarrow\widehat{COD}=2\cdot\widehat{COA}\)

hay \(\widehat{COD}=120^0\)

Vậy: \(\widehat{COD}=120^0\)

 

20 tháng 1 2021

Làm luôn phần c :)

c, Vì ACOD là hình thoi (cmb)

\(\Rightarrow\) OC // AD (tính chất hình thoi)

Mà E \(\in\) OC (CE là đường kính của đường tròn tâm O)

\(\Rightarrow\) CE // AD 

Xét tứ giác ACED có: CE // AD (cmt)

\(\Rightarrow\) ACED là hình thang (dhnb hình thang)

Ta có: SACD = \(\dfrac{1}{2}\)AH.CD (1)

SDCE = \(\dfrac{1}{2}\)CD.DE (Vì tam giác DCE là tam giác vuông (cm được theo tứ giác nội tiếp) (2)

Từ (1) và (2) \(\Rightarrow\) SACED = SACD + SDCE = \(\dfrac{1}{2}\)AH.CD + \(\dfrac{1}{2}\)CD.DE = \(\dfrac{1}{2}\)CD.(AH + DE) (3)

Xét tam giác CED có: O là trung điểm của CE (gt)

H là trung điểm của CD (cma)

\(\Rightarrow\) OH là đường trung bình của tam giác CED (đ/n)

\(\Rightarrow\) OH = \(\dfrac{1}{2}\)DE

hay 2OH = DE

lại có AH = OH (H là trung điểm của OA theo gt)

\(\Rightarrow\) 2AH = DE (4)

Từ (3) và (4) 

\(\Rightarrow\) SACED = \(\dfrac{1}{2}\)CD(AH + 2AH) = \(\dfrac{1}{2}\)CD.3AH = AH.SACD

Chúc bn học tốt! (Ko bt phần tính S kia cần gì thêm nx ko?)

a: Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)

b: Xét (O) có 

OH là một phần đường kính

CD là dây

OH\(\perp\)CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác ECAD có 

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo EA

Do đó: ECAD là hình bình hành

mà EA\(\perp\)CD

nên ECAD là hình thoi

12 tháng 12 2019

a/ 

HC=HD (bán kính vuông góc với dây cung thì chia đôi dây cung)

HA=HE (đề bài)

=> ACED là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà AE vuông góc CD

=> ACED là hình thoi (Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi)

b/

Vì ACDE là hình thoi => AD=ED => tg ADE cân tại D

Mà DH vuông góc AE

=> DH là đường cao đồng thời là đường phân giác của ^ADE => ^ADC=^CDI

Ta có \(sđ\widehat{ADC}=\frac{1}{2}sđ\widebat{AC}\)(góc nội tiếp đường tròn (O))

\(sđ\widehat{ABC}=\frac{1}{2}sđ\widebat{AC}\) (góc nội tiếp đường tròn (O))

=> ^CDI=^ABC

Xét tg vuông BCH có

^ABC+^DCB=90 => ^CDI+^DCB=90 => ^CID=90=> ^EIB=90

=> I nhìn EB dưới 1 góc vuông => I thuộc đường trong đường kính EB tâm O' là trung điểm của EB

c/

Xét tg vuông CDI có \(IH=CH=DH=\frac{CD}{2}\) (trung tuyến thuộc cạnh huyền)

=> tg DHI cân tại H => ^CDI=^DIH (1)

Xét tg vuông BIE có \(IO'=EO'=BO'\) (trung tuyến thuộc cạnh huyền)

=> tg BIO' cân tại O' => ^ABC=^BIO' (2)

Mà ^CDI=^ABC (cmt) (3)

Từ (1) (2) (3) => ^DIH=^BIO'

Mà ^BIO'+^O'IE=90 => ^DIH+^O'IE=^HIO'=90 => HI vuông góc IO' => HI là tiếp tuyến của đường tròn (O') tại I

d/

Ta có OA=5 => AB=10

EO'=3=> EB=6

=> AE=AB-EB=10-6=4 => HE=2

=> HO'=HE+EO'=2+3=5

Mà IO'=EO' (cmt)=3

Xét tg vuông HIO' có

\(HI^2=HO'^2-IO'^2=5^2-3^2=16\Rightarrow HI=4\)

30 tháng 1 2021

Đề có cho C ko bn êy

30 tháng 1 2021
Uk chắc lag
18 tháng 12 2023

a: E đối xứng A qua H

=>H là trung điểm của AE

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác ACED có

H là trung điểm chung của AE và CD

=>ACED là hình bình hành

Hình bình hành ACED có AE\(\perp\)CD

nên ACED là hình thoi

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB

Ta có: AC\(\perp\)CB

DE//AC(ACED là hình thoi)

Do đó: DE\(\perp\)BC tại I

=>ΔEIB vuông tại I

=>I nằm trên đường tròn tâm O', đường kính EB

Ta có: OO'+O'B=OB

=>O'O=OB-O'B=R1-R2

=>(O) và (O') tiếp xúc trong với nhau tại B

c: ΔDIC vuông tại I

mà IH là đường trung tuyến

nên HI=HD

=>ΔHID cân tại H

=>\(\widehat{HID}=\widehat{HDI}=90^0-\widehat{DCB}\)

Ta có: O'E=O'I

=>ΔO'EI cân tại O'

=>\(\widehat{O'IE}=\widehat{O'EI}\)

mà \(\widehat{O'EI}=\widehat{HED}\)(hai góc đối đỉnh)

và \(\widehat{HED}=\widehat{DCB}\)(=90 độ-CDE)

nên \(\widehat{O'IE}=\widehat{DCB}\)

Ta có: \(\widehat{HIO'}=\widehat{HIE}+\widehat{O'IE}\)

\(=90^0-\widehat{DCB}+\widehat{DCB}=90^0\)

=>HI là tiếp tuyến của (O')