Chứng minh phân số \(\dfrac{4n+1}{12n+7}\) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo chỉ thay số thôi nha:
https://olm.vn/hoi-dap/detail/211315812824.html
Chúc bạn học tốt
Forever
4n+1/12n+7
Ta thấy:
3.(4n+1)=12n+3
nên 12n+7-(12n+3) chia hết 4n+1 hay 4 chia hết cho 4n+1
Suy ra 4-1 chia hết cho 4n hay 3 chia hết cho 4n
mà n thuộc n nên n rỗng
Vậy n rỗng
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Gọi \(d\inƯC\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)
Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)
⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d
⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d
⇔1⋮d⇔1⋮d
⇔d∈Ư(1)⇔d∈Ư(1)
⇔d∈{1;−1}⇔d∈{1;−1}
⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1
vậy A=12n+130n+2A=12n+130n+2 là phân số tối giản
Gọi d là ƯC( 4n + 1 , 12n + 7 )
=> 4n + 1 chia hết cho d , 12n + 7 chia hết cho d
=> 3( 4n + 1 ) chia hết cho d
=> 12n + 3 chia hết cho d , 12n + 7 chia hết cho d
=> ( 12n + 7 ) - ( 12n + 3 ) chia hết cho d
=> 4 chia hết cho d
=> d thuộc Ư(4)
=> d thuộc { +1 ; +2 ; +4 }
Mà 4n + 1 là số lẻ
=> d = 1
=> Phân số 4n + 1/12n + 7 là phân số tối giản ( đpcm )
Gọi d là U(4n+1; 12n+7)
\(\Rightarrow\)4n+1 \(⋮\)d ; 12n+7 \(⋮\)d
\(\Rightarrow\)3(4n+1) \(⋮\)d ; 12n+7 \(⋮\)d
\(\Rightarrow\)12n+7 - 3(4n+1) \(⋮\)d
\(\Rightarrow\)4\(⋮\)d\(\Rightarrow\)d\(\in\)U(4) = { \(\pm\)1; \(\pm\)2;\(\pm\)4}
mà 4n+1 \(⋮\)d
\(\Rightarrow\)d \(\ne\)2;4
\(\Rightarrow\)d=1
Vậy ....
Đặt UCLN(2n + 1 ; 4n + 3) = d
2n + 1 chia hết cho d => 4n + 2 chia hết cho
Mà UCLN(4n + 2 ; 4n + 3) = 1
=> d = 1 => DPCM
Gọi d là UCLN(4n+1;12n+7)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\12n+7⋮d\end{matrix}\right.\)
\(\Leftrightarrow3\left(4n+1\right)-12n-7⋮d\)
\(\Leftrightarrow12n+3-12n-7⋮d\)
\(\Leftrightarrow-4⋮d\)
\(\Leftrightarrow d\inƯ\left(-4\right)\)
\(\Leftrightarrow d\in\left\{1;-1;2;-2;4;-4\right\}\)(1)
Ta có: 4n+1 và 12n+7 là hai số lẻ
nên ƯCLN(4n+1;12n+7) là số lẻ
hay d là số lẻ
\(\Leftrightarrow d⋮2̸\)(2)
Từ (1) và (2) suy ra \(d\in\left\{1;-1\right\}\)
hay d=1
\(\LeftrightarrowƯCLN\left(4n+1;12n+7\right)=1\)
\(\Leftrightarrow\dfrac{4n+1}{12n+7}\) là phân số tối giản(đpcm)