K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2021

Cái hình mình vẽ tương đôi thôi, bạn cứ coi như là nó đều đi ha :))))

undefined

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

11 tháng 7 2017

A E D B C

a) Xét \(\Delta EBC\)và \(\Delta DCB\)có:

    C = B,    CB chung,   EBC = DCB  \(\Rightarrow\)   \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)EC = DB

      \(\Rightarrow\)AE = AD \(\Rightarrow\)\(\Delta AED\)cân.

b) Ta có:

     C = \(\frac{180^o-A}{2}\),    E = \(\frac{180^o-A}{2}\)\(\Rightarrow\)C = E \(\Rightarrow\)DE // BC ( đồng vị )

c) Vì \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)BE = DC

16 tháng 9 2018

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

16 tháng 9 2018

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

16 tháng 9 2018

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

tham khảo á

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

23 tháng 12 2016

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

EBC = DCB (cmt)

BC là cạnh chung

ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

c) bớt ED đi, c/m ở trên r`

30 tháng 12 2017

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

EBC = DCB (cmt)

BC là cạnh chung

ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

c) bớt ED đi, c/m ở trên r`

a) Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác)(1)

Xét ΔABC có 

CE là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(Tính chất tia phân giác)(2)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)

Xét ΔABC có

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)(cmt)

nên ED//BC(Định lí Ta lét đảo)

Xét tứ giác BEDC có ED//BC(cmt)

nên BEDC là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang BEDC(ED//BC) có \(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)

nên BEDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Ta có: \(\widehat{EDB}=\widehat{DBC}\)(ED//BC)

mà \(\widehat{DBC}=\widehat{EBD}\)(BD là tia phân giác)

nên \(\widehat{EDB}=\widehat{EBD}\)

Xét ΔEBD có \(\widehat{EDB}=\widehat{EBD}\)(cmt)

nên ΔEBD cân tại E(Định nghĩa tam giác cân)

hay ED=EB(đpcm)

18 tháng 1 2015

Ta có: DMB=MBC (so le trong)

mà DBM=MBC(giả thiết)

=>DMB=DBM.

=>DMB là tam giác cân(ĐPCM)

=>DM=DB*

Làm tương tự như trên ta có :

EMC=ECM.

=>MEC là tam giác cân.

=>EM=CE.**

Từ *và**,=>DB+CE=DM+ME=DE(ĐPCM).