Cho △ABC vuông tại A có BC = 5, AB = 2AC
A. Tính AC
b. Vẽ đường cao AD, trên tia đối AH lấy điểm I sao cho AI = \(\dfrac{1}{3}\)AH. Kẻ Cy // AH. Gọi A là giao điểm của BI và Cy. Tính \(S_{AHCD}\)
c. Vẽ (B; AB) và (C; AC) cắt nhau tại E. C/m CE là tiếp tuyến (B)