K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

a)
tam giác ABC vuông tại A có
AH2=BH.CH
92=4.CH
CH=81:4
CH=20,25

5 tháng 4 2020

a) đặt AB=x=>AC=2x

áp dụng định lý Pitago zô tam giác zuông ABC

\(AB^2+AC^2=BC^2=>x^2+4x^2=25\)

\(=>5x^2=25=>x^2=5\)

=>\(x=\sqrt{5}\)

\(=>AB=\sqrt{5};AC=2\sqrt{5}\)

b) Ta có \(AH//CD\)( từ zuông góc đến song song ) 

=> AHCD là hình thang

Áp dụng HTL ta có

\(AH=\frac{AB.AC}{BC}=\frac{\sqrt{5}.2\sqrt{5}}{5}=2=>AI=\frac{1}{3}AH=\frac{1}{3}=>HI=\frac{2}{3}\)

Áp dụng đinh lý ta lét

\(\frac{HI}{CD}=\frac{BH}{BC}=\frac{\frac{AB^2}{BC}}{BC}=\frac{AB^2}{BC^2}=\frac{5}{25}=\frac{1}{5}=>CD=5HI=10\)

Ta có \(HC=\frac{AC^2}{BC}=\frac{\left(2\sqrt{5}\right)^2}{5^2}=\frac{4}{5}\)

zậy 

\(S_{AHCD}=\frac{1}{2}\left(AH+CD\right).HC=\frac{1}{2}\left(2+10\right).\frac{4}{5}=\frac{25}{4}\)

23 tháng 9 2022

AB =2AC mà .Sửa AB=x thànhAB=x, AC=2x thành AC=x

c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AI là đường cao ứng với cạnh huyền BD, ta được:

\(BI\cdot BD=AB^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BI\cdot BD=BH\cdot BC\)

a: Xét ΔCAB vuông tại C có CH là đường cao ứng với cạnh huyền AB

nên \(CH^2=HB\cdot HA\)

hay CH=6(cm)

b: Ta có: ΔCAB vuông tại C 

nên ΔCAB nội tiếp đường tròn đường kính AB

hay \(C\in\left(O\right)\)

Xét ΔABD vuông tại B có BC là đường cao ứng với cạnh huyền AD

nên \(AB^2=AC\cdot AD\)