K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha

9 tháng 8 2018

25 tháng 3 2017

Chọn A

29 tháng 1 2019

28 tháng 10 2023

a: Xét ΔSAC có

H,K lần lượt là trung điểm của SA,SC

=>HK là đường trung bình

=>HK//AC

Xét (GHK) và (ABCD) có

HK//AC
\(G\in\left(GHK\right)\cap\left(ABCD\right)\)

Do đó: (GHK) giao (ABCD)=xy, xy đi qua G và xy//HK//AC

b: Chọn mp(SBD) có chứa SD

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔABC có

G là trọng tâm

BO là trung tuyến của ΔABC

Do đó: B,O,G thẳng hàng

=>G\(\in\)BD

Trong mp(SAC), gọi I là giao điểm của SO với HK

\(I\in SO\subset\left(SBD\right);I\in HK\subset\left(GHK\right)\)

=>\(I\in\left(SBD\right)\cap\left(GHK\right)\)(1)

\(G\in BD\subset\left(SBD\right);G\in\left(GHK\right)\)

=>\(G\in\left(SBD\right)\cap\left(GHK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(SBD\right)\cap\left(GHK\right)=GI\)

Gọi M là giao điểm của SD với GI

=>M là giao điểm của SD với (SHK)

c: Xét ΔSAC có

O,K lần lượt là trung điểm của CA,CS

=>OK là đường trung bình của ΔSAC

=>OK//SA và OK=SA/2

OK=SA/2

SH=SA/2

Do đó: OK=SH

Xét tứ giác SHOK có

SH//OK

SH=OK

Do đó: SHOK là hình bình hành

=>HK cắt SO tại trung điểm của mỗi đường

mà E là trung điểm của HK

nên Elà trung điểm của SO

=>E trùng với I

=>(SBD) giao (GHK)=GE

=>G,E,M thẳng hàng

4 tháng 12 2021

Gọi \(K=AB\cap IJ\)\(P=KG\cap SB\)\(H=KG\cap SA\)

\(\Rightarrow JIHP\) là thiết diện cần tìm 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) S là điểm chung của hai mặt phẳng (SAB) và (SCD) mà AB // CD

Từ S kẻ Sx sao cho Sx // AB // CD nên Sx là giao tuyến của hai mặt phẳng (SAB) và (SCD).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

b) Gọi E là trung điểm của AB

G là trọng tâm tam giác SAB nên \(\frac{{EG}}{{SE}} = \frac{1}{3}\)

N là trọng tâm tam giác ABC nên\(\frac{{EN}}{{EC}} = \frac{1}{3}\)

Theo Ta lét, suy ra GN // SC mà SC \( \subset \) (SAC). Do đó, GN // (SAC)

22 tháng 9 2017