K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

b: AM+MB=AB

CN+ND=CD

mà MB=ND và AB=CD

nên AM=CN

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

c: AMCN là hình bình hành

=>AN//CM

=>NK//MH

BMDN là hình bình hành

=>BN//DM

=>NH//KM

Xét tứ giác MKNH có

MK//NH

MH//NK

Do đó: MKNH là hình bình hành

16 tháng 10 2023

ngu 

 

a: Xét tứ giác AMCN có

AM//CN

AM=CN

=>AMCN là hình bình hành

Xét tứ giác AMND có

AM//ND

AM=ND

AM=AD

=>AMND là hình thoi

b: AMND là hình thoi

=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N

Xét tứ giác MBCN có

MB//CN

MB=CN

MB=BC

=>MBCN là hình thoi

=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN

Xét ΔMDC có

MN là trung tuyến

MN=DC/2

=>ΔMDC vuông tại M

Xét tứ giác MINK có

góc MIN=góc MKN=góc IMK=90 độ

=>MINK là hình chữ nhật

c: Xét ΔMDC có MI/MD=MK/MC

nên IK//DC

6 tháng 9 2021

undefined

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Suy ra: MN//AD

hay MN\(\perp\)AC

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

mà MN\(\perp\)AC

nên AMCN là hình thoi

 

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Suy ra: MN//AD

hay MN\(\perp\)AC

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

mà MN\(\perp\)AC

nên AMCN là hình thoi

 

21 tháng 11 2018

O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC