K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

Phương trình đã cho tương đương 

\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)

Để phương trình có 2 nghiệm phân biệt thì

\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)

⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)

( ( ( 0 15 33 +∞ Dựa vào trục số, (1) ⇔ m > 0

Vậy điều kiện của m là m > 0 

Sai thì thứ lỗi ạ !

 

NV
8 tháng 4 2021

ĐKXĐ: ...

\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)

\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)

Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm

Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb

\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)

\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)

2 tháng 4 2021

ĐK: \(-3\le x\le6\)

Đặt \(\sqrt{x+3}+\sqrt{6-x}=t\left(3\le t\le3\sqrt{2}\right)\)

\(\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{t^2-9}{2}\)

\(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=m\)

\(\Leftrightarrow m=f\left(t\right)=\dfrac{-t^2+2t+9}{2}\)

Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m\le maxf\left(x\right)\)

\(\Leftrightarrow\dfrac{-9+6\sqrt{2}}{2}\le m\le3\)

NV
27 tháng 12 2022

ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{x+3}+\sqrt{6-x}=t\)

Ta có: \(t=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)

\(t\le\sqrt{2\left(x+3+6-x\right)}=3\sqrt{2}\)

\(\Rightarrow3\le t\le3\sqrt{2}\)

Lại có:

\(t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\dfrac{9-t^2}{2}=m\Leftrightarrow m=-\dfrac{1}{2}t^2+t+\dfrac{9}{2}\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+t+\dfrac{9}{2}\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=1\notin\left[3;3\sqrt{2}\right]\) 

\(f\left(3\right)=3\) ; \(f\left(3\sqrt{2}\right)=\dfrac{-9+6\sqrt{2}}{2}\)

\(\Rightarrow\dfrac{-9+6\sqrt{2}}{2}\le f\left(t\right)\le3\)

\(\Rightarrow\) Phương trình có nghiệm khi \(\dfrac{-9+6\sqrt{2}}{2}\le m\le3\)

Có 4 giá trị nguyên của m thỏa mãn

Δ=(2m-2)^2-4(m-3)

=4m^2-8m+4-4m+12

=4m^2-12m+16

=4m^2-12m+9+7=(2m-3)^2+7>=7>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(\left(\dfrac{1}{x1}-\dfrac{1}{x2}\right)^2=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}-\dfrac{2}{x_1x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{\left(x_1\cdot x_2\right)^2}-\dfrac{2}{x_1\cdot x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(2m-2\right)^2-2\left(m-3\right)}{\left(-m+3\right)^2}-\dfrac{2}{-m+3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-8m+4-2m+6}{\left(m-3\right)^2}+\dfrac{2}{m-3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-10m+10+2m-6}{\left(m-3\right)^2}=\dfrac{\sqrt{11}}{2}\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(4m^2-8m+4\right)\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(2m-2\right)^2\)

=>\(\Leftrightarrow\left(\dfrac{m-3}{2m-2}\right)^2=\dfrac{2}{\sqrt{11}}\)

=>\(\left[{}\begin{matrix}\dfrac{m-3}{2m-2}=\sqrt{\dfrac{2}{\sqrt{11}}}\\\dfrac{m-3}{2m-2}=-\sqrt{\dfrac{2}{\sqrt{11}}}\end{matrix}\right.\)

mà m nguyên

nên \(m\in\varnothing\)

9 tháng 7 2021

 

Điều kiện xác định x∈Rx∈R.

Đặt t=√x2+1 (t≥1t≥1)

Phương trình trở thành t2−1−4t−m+1=0

⇔t2−4t=m

⇔t2−4t=m. (1)

Để phương trình có 44 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt lớn hơn 11.

Xét hàm số f(t)=t2−4t có đồ thị là parabol có hoành độ đỉnh x=2∈(1;+∞) nên ta có bảng biến thiên:

Dựa BBT ta thấy để (1) có hai nghiệm phân biệt lớn hơn 11 thì −4<m<−3

Vậy không có giá trị nguyên của mm thỏa mãn yêu cầu bài toán.

9 tháng 7 2021

mik có ghi thừa 1 dòng ⇔t2-4t=m bạn nhé

 

NV
5 tháng 1 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\7^x\ge m\end{matrix}\right.\)

\(\left[{}\begin{matrix}4log_2^2x+log_2x-5=0\\7^x-m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=2^{-\dfrac{5}{4}}\\7^x=m\end{matrix}\right.\) 

Với \(m\le0\) thì pt đã cho luôn có đúng 2 nghiệm

Vậy không cần xét tiếp, hiển nhiên là có vô số giá trị thực của m rồi?

NV
30 tháng 12 2020

ĐKXĐ: \(1\le x\le2\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+3x-2=0\\x^2-2x+m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x^2-2x+m=0\left(1\right)\end{matrix}\right.\)

Pt có 2 nghiệm pb khi và chỉ khi:

TH1: (1) vô nghiệm \(\Leftrightarrow m>1\)

Th2: 2 nghiệm của (1) đều không thuộc \(\left[1;2\right]\)

(1) \(\Leftrightarrow x^2-2x=-m\)

Xét hàm \(f\left(x\right)=x^2-2x\)

\(f\left(1\right)=-1\) ; \(f\left(2\right)=0\)

Để hàm có 2 nghiệm đều không thuộc khoảng đã cho thì \(-m>0\Leftrightarrow m< 0\)

Vậy \(\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)