Tìm f(x), biết x3+3x2+ax+5 chia x-3 thì dư 2
Mình k hiểu đề cho lắm, cb giải thích giúp mình ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Bài này làm khá tắt chỗ 3 điểm cực trị, mình trình bày lại để bạn dễ hiểu nhé!
.......
Để y' = 0\(\Leftrightarrow\left[{}\begin{matrix}x=1\\f'\left(\left(x-1\right)^2+m\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2+m=-1\\\left(x-1\right)^2+m=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2=-1-m\left(1\right)\\\left(x-1\right)^2=3-m\left(2\right)\end{matrix}\right.\)
Để hàm số có 3 điểm cực trị thì y' = 0 có 3 nghiệm phân biệt.
Ta có 2 trường hợp.
+) \(TH_1:\) (1) có nghiệm kép x = 1 hoặc vô nghiệm và (2) có hai nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m\le0\\3-m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge-1\\m< 3\end{matrix}\right.\) \(\Leftrightarrow-1\le m< 3\)
+) \(TH_2:\) (2) có nghiệm kép x = 1 và (2) có một nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m>0\\3-m\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Leftrightarrow m\in\varnothing\)
\(\Rightarrow-1\le m< 3\Rightarrow S=\left\{-1;0;1;2\right\}\)
Do đó tổng các phần tử của S là \(-1+0+1+2=2\)
1: \(\dfrac{f\left(x\right)}{x-3}=\dfrac{2x^2-6x+\left(a+6\right)x-3a-18+3a+19}{x-3}\)
=2x^2+(a+6)+3a+19/x-3
Để f(x)/x-3 dư 4 thì 3a+19=4
=>3a=-15
=>a=-5
2: \(\dfrac{f\left(x\right)}{x-5}=\dfrac{3x^2-15x+\left(a+15\right)x-5a-75+5a+102}{x-5}\)
\(=3x+a+15+\dfrac{5a+102}{x-5}\)
Để dư là 27 thì 5a+102=27
=>5a=-75
=>a=-15
dựa vào đây nha bạn: https://hoc24.vn/hoi-dap/question/476806.html
Áp dụng định lý bơ du ta được :
\(2^3+3.2^2+2a+5=8+12+2a+5=25+2a\)
Vậy \(f\left(x\right)=25+2a\)