giải hệ pt 3 ẩn \(\int^{x+y+z=11}_{\int^{2x-y+z=5}_{3x+2y+x=14}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng máy tính giải hệ phương trình là ra kết quả x= 2/5 y=-2/5 z =12
e ko chắc lắm vì em ms lớp 8
Cộng 3 vế của hệ pt lại được: \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=9\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\) x+y+z=3 hay x+y+z=-3
ở pt đầu => x(x+y+z)=2=> x= \(\frac{2}{x+y+z}\)mà x+y+z có 2 TH => x = \(\frac{2}{3}\) hay x=\(\frac{-2}{3}\)
Tương tự với 2 pt còn lại, ta có 2 nghiệm :S= { \(\left(\frac{2}{3};1;\frac{4}{3}\right);\left(\frac{-2}{3};-1;\frac{-4}{3}\right)\)}
( Do vế phải của 3 pt đều dương và có \(x^2,y^2,z^2\) đều dương => xy , yz và xz cũng dương => x, y, z phải cùng dấu )
\(\hept{\begin{cases}x+y+z=11\left(1\right)\\2x-y+z=5\left(2\right)\\3x+2y+z=14\left(3\right)\end{cases}}\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2x+2y+2z=22\left(4\right)\\3x+3y+3z=33\left(5\right)\end{cases}}\)
Lấy (4) - (2) được \(3y+z=17\left(6\right)\)
Lấy (5) - (3) được \(y+2z=19\left(7\right)\)
Từ (6) và (7) có hệ \(\hept{\begin{cases}3y+z=17\\y+2z=19\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y+z=17\\3y+6z=57\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y+z=17\\5z=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=9\\z=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\\z=8\end{cases}}\)
Thay vào (1) được x + 3 + 8 = 11
<=> x = 0
Vậy ..........
lấy pt(1) + pt(2), ta có
\(3x+2z=16\)(4)
lấy 2.pt(2)+pt(3), ta có
\(7x+3z=24\)(5)
từ (4), (5), ta có hpt sau
\(\hept{\begin{cases}3x+2z=16\\7x+3z=24\end{cases}\Leftrightarrow}\hept{\begin{cases}9x+6z=48\\14x+6z=48\end{cases}}\)
từ 2 vế của 2 pt => x=0 và tính được z=8=>y=3
^_^
\(\left\{{}\begin{matrix}x+y+z=11\\2x-y+z=5\left(4\right)\\3x+2y+z=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+z=11\left(1\right)\\4x-2y+2z=10\left(2\right)\\3x+2y+z=14\left(3\right)\end{matrix}\right.\)
Lấy (4) cộng (1) vế với vế , ta có :
\(3x+2z=16\circledast\)
Lấy (2) cộng (3) vế với vế , ta có :
\(7x+3z=24\oplus\)
Từ \(\circledast;\oplus\) , ta có hpt : \(\left(I\right)\left\{{}\begin{matrix}3x+2z=16\\7x+3z=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+6z=48\\14x+6z=48\end{matrix}\right.\)( vô lý )
=> hpt (I) vô nghiệm
=> hpt đã cho vô nghiệm
Từ pt (1) và (2)
=> \(y^2-xy=x^2+2x+y^2+2y\Leftrightarrow x^2+xy+2\left(x+y\right)=0\)
<=> \(\left(x+2\right)\left(x+y\right)=0\)
.....
\(hpt\Leftrightarrow\int^{x^3=9y^2-27y+27\left(1\right)}_{\int^{y^3=9z^2-27z+27}_{z^3=9x^2-27x+27}}\)
Vì vai trò x ; y; z bình đẳng trong hệ ta g/s \(x\le y\le z\) (I)
Với \(x\le y\Rightarrow9x^2-27x+27\le9y^2-27y+27\Leftrightarrow z^3\le x^3\Leftrightarrow z\le x\) ( II )
\(x\le z\Rightarrow9x^2-27x+27\le9z^2-27z+27\Leftrightarrow z^3\le y^3\Leftrightarrow z\le y\) ( III )
Từ (I) ; ( II ) ; (III ) => x = y =z
Thay x = y vào pt (1) giải ra nghiệm
bài này mình cộng 3 hệ lại cuối cùng được ntn:
\(\left(x-3\right)^3+\left(y-3\right)^3+\left(z-3\right)^3=0\)
đến đây chả biết làm tn :3 ko nhớ HĐT \(A^3+B^3+C^3\) bằng gì nữa @@
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
v~~~ xài công đại số thử đi bạn
mk đang xài nk nhưng đang bí tí