K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

Cộng 3 vế của hệ pt lại được: \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=9\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\) x+y+z=3 hay x+y+z=-3

ở pt đầu => x(x+y+z)=2=> x= \(\frac{2}{x+y+z}\)mà x+y+z có 2 TH => x = \(\frac{2}{3}\)  hay x=\(\frac{-2}{3}\)

Tương tự với 2 pt còn lại, ta có 2 nghiệm :S= { \(\left(\frac{2}{3};1;\frac{4}{3}\right);\left(\frac{-2}{3};-1;\frac{-4}{3}\right)\)}

( Do vế phải của 3 pt đều dương và có \(x^2,y^2,z^2\)  đều dương => xy , yz và xz cũng dương => x, y, z phải cùng dấu )

14 tháng 1 2016

TH1:x,y,z=0

TH2:x=2\(\frac{3}{10}\)

y=3\(\frac{5}{6}\)

z=11\(\frac{1}{2}\)

14 tháng 1 2016

giải ra cơ kết quả mik cx có mà hình như KQ sai rồi

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).

Dễ thấy $x+y+z\neq 0$. Khi đó ta có:

\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)

\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)

Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)

Thay vào PT thứ nhất của $(*)$ suy ra:

\(2k(2k+3k+4k)=2\)

\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)

Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)

Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)

NV
13 tháng 6 2020

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 6 2020

@Nguyễn Việt Lâm

17 tháng 6 2016

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

16 tháng 6 2016

bài của tui mà -_-

NV
13 tháng 6 2020

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

11 tháng 6 2016

chứng minh cái gì đấy hả bạn ơi ?

11 tháng 6 2016

akl quên vế sau