K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

Hình như thiếu điều kiện \(a,b,c>0\)

Áp dụng BĐT Cosi:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế các BĐT trên ta được: 

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\right)\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\)

Đẳng thức xảy ra khi \(a=b=c\)

13 tháng 5 2018

bạn làm dc chưa

17 tháng 5 2018

Lm đc r

22 tháng 12 2019

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{ac+bc+c^2+ab}}=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\)

\(tt\Rightarrow2\text{ lần biểu thức}=2\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+2\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+2\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

\(\le\frac{b}{b+a}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+b}\left(\sqrt{ab}\le\frac{a+b}{2}\right)=3\Rightarrow dpcm\)

26 tháng 4 2020

Bài 1 : Bạn tự vẽ hinh 

a,

I là trung điểm AC và IN//AB nên IN là đường trung bình trong tam giác ABC

Suy ra N là trung điểm BC

I là trung điểm AC và IM//BC nên IM là đường trung bình trong tam giác ABC

Suy ra M là trung điểm BA

Do đó MN là đường trung bình của tam giác ABC nên MN//AC và MN=1/2 AC=5 (cm) 

b,

MN// AC nên AMNC là hình thang

Mặt khác AM=1/2AB=1/2BC=CN

MN<AC nên AMNC là hình thang cân

IN //AB hay IN//BM

IM//BC hay IM//BN nên IMBN là hình bình hành

Mặt khác ABC cân tại B nên BI vuông góc với AC hay BI vuông góc với MN

Do đó IMBN là hình thoi

c,

IMBN là hình thoi nên O là trung điểm IB và MN

Tứ giác BICK có hai đường chéo BC và IK cắt nhau tại trung điểm mỗi đường nên BICK là hình bình hành

Do đó BK//IC//AI và BK=IC=IA

hay ABKI là hình bình hành

O là trung điểm của BI nên O cũng là trung điểm AK

Do vậy A,O,K thẳng hàng

26 tháng 4 2020

a) Ta có I là trung điểm AC; IN//AB 

=> IN là đường trung bình \(\Delta\)ABC

=> N là trung điểm BC

Cmtt: M là trung điểm AB

=> MN là đường trung bình \(\Delta\)ABC

=> MN//AC và \(MN=\frac{1}{2}AC=\frac{1}{2}\cdot10=5\left(cm\right)\)

b) Tứ giác AMNC có: MN//AC
=> Tứ giác AMNC là hình thang

Lại có: \(AM=\frac{1}{2}AB\)(do M là trung điểm AB)

\(AN=\frac{1}{2}CB\)(Do N là trung điểm AC)

\(AB=\frac{1}{2}CB\)(do \(\Delta\)ABC cân tại B)

=> AMNC là hình thang cân

Tứ giác IMBN có: IM//BN và IN//BM

=> Tứ giác IMBN là hình bình hành

Lại có MB=BN\(\left(=\frac{1}{2}AD=\frac{1}{2}BC\right)\)

=> IMBN là hình thoi

c) N là trung điểm IK và O là trung điểm BI

=> ON là đường trung bình của \(\Delta\)IBK

=> ON//BK và ON//AI

=> BK//AI

IN//AB => IK//AB

=> Tứ giác ABKI là hình bình hành

Có D là trung điểm BI

=> O là trung điểm của AK

=> O;A;K thẳng hàng

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

29 tháng 9 2017

Đặt \(THANG=\frac{\left(b+c\right)\sqrt{a^2+1}}{\sqrt{b^2+1}\sqrt{c^2+1}}\)

\(=\frac{\left(b+c\right)\sqrt{a^2+ab+bc+ca}}{\sqrt{b^2+ab+bc+ca}\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{\left(b+c\right)\sqrt{\left(a+b\right)\left(a+c\right)}}{\sqrt{\left(b+c\right)\left(a+b\right)}\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)}\sqrt{\left(b+c\right)}}=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)^2}}\)

\(=\frac{b+c}{b+c}=1\left(b,c\in R^+\right)\)

29 tháng 9 2017

chứng minh bằng 1

19 tháng 7 2020

cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi

8 tháng 1 2017

đề này thiếu r` bn viết lại đi mai mk lm cho