K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2020

\(A=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{xyz+yz+y}\)

\(=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{xyz}{y+xyz+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{2019}{y+2019+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{yz+y+2019}{yz+y+2019}=1\)

NV
4 tháng 3 2020

\(P=\frac{2019xz}{xyz+2019xz+2019z}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{2019xz}{2019+2019xz+2019z}+\frac{y}{y\left(xz+z+1\right)}+\frac{z}{xz+z+1}\)

\(\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=1\)

1 tháng 6 2018

â

gh

j

22 tháng 5 2022

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{z+xz+1}{xz+z+1}\)

\(A=1\)

 

 

 

22 tháng 5 2022

uii sai thì thông cảm nha bạn:<

NV
7 tháng 8 2021

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673

9 tháng 9 2021

Đề thiếu kìa :vv

 

9 tháng 9 2021

1/x+1/y+1/z=0⇔xy+yz+zx=0

⇒yz=−xy−zx⇒yz/x^2+2yz=yz/x^2+yz−xy−zx

=yz/(x−y)(x−z)

Tương tự: xz/y^2+2xz=xz/(y−x)(y−z)

xy/z^2+2xy=xy/(x−z)(y−z)

⇒A=−yz(y−z)−zx(z−x)−xy(x−y)/(x−y)(y−z)(z−x)=1

18 tháng 6 2018

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{xy}{z}+\dfrac{yz}{x}\)\(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}=2\sqrt{y^2}=2y\left(1\right)\)

\(\dfrac{yz}{x}+\dfrac{xz}{y}\)\(2\sqrt{\dfrac{yz}{x}.\dfrac{xz}{y}}=2\sqrt{z^2}=2z\left(2\right)\)

\(\dfrac{xy}{z}+\dfrac{xz}{y}\)\(2\sqrt{\dfrac{xy}{z}.\dfrac{xz}{y}}=2\sqrt{x^2}=2x\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3) , ta được :

\(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\)\(2\left(x+y+z\right)\)

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\)\(x+y+z=2019\)

\(P_{Min}=2019\)\(x=y=z=673\)

18 tháng 6 2018

Dụng cosi để tìm GTNN hoặc GTLN nha

31 tháng 8 2021

undefined

2 cái kìa còn lại làm tương tự rồi sau đó cộng lại với nhau sẽ ra 1 số tự nhiên nhé, dễ nên lười đánh nốt lắm :v

1 tháng 9 2021

cam ơn ah. kết quả bằng 3 ah.

10 tháng 11 2021

\(\dfrac{1}{\left(x-y\right)\left(z^2+yz-x^2-xz\right)}=\dfrac{1}{\left(x-y\right)\left[\left(z-x\right)\left(z+x\right)+y\left(z-x\right)\right]}=\dfrac{1}{\left(z-x\right)\left(x-y\right)\left(x+y+z\right)}\)

Tương tự: \(\dfrac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}=\dfrac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}\)

\(\dfrac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}=\dfrac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}\)

\(\Rightarrow M=\dfrac{y-z-z+x-x+y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}\\ M=\dfrac{2}{\left(x-y\right)\left(z-x\right)\left(x+y+z\right)}\)

10 tháng 11 2021

tại sao lại không có điều kiện ?