K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

Bài 4:

29 tháng 11 2019

Bài 6:

b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)

=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).

Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)

=> \(\widehat{ADB}+\widehat{HDB}=120^0\)

\(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)

=> \(2.\widehat{ADB}=120^0\)

=> \(\widehat{ADB}=120^0:2\)

=> \(\widehat{ADB}=60^0.\)

=> \(\widehat{ADB}=\widehat{HBD}=60^0\)

Xét \(\Delta ABD\) có:

(định lí tổng ba góc trong một tam giác).

=> \(90^0+\widehat{ABD}+60^0=180^0\)

=> \(150^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-150^0\)

=> \(\widehat{ABD}=30^0\)

Vậy \(\widehat{ABD}=30^0.\)

Chúc bạn học tốt!

10 tháng 5 2019

Bạn tự vẽ hình nha.

Xét tam giác BED và tam giác CKD ta có:

DE=DK

BD=CD( D là trung điểm của BC)

BDE=CDK(đối đỉnh)

Do đó tam giác BED=tam giác CKD(c-g-c)

Vậy góc BED=góc CKD.Mà DK vuông góc với AC nên góc DKA =góc DKC=90 độ

=>BED =90 độ

a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: Xét ΔAHB vuông tại H có HE là đường cao

nen AE*AB=AH^2

Xét ΔAHC vuông tạiH có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

c: góc MEB=góc AEF=góc AHF=góc MCF

Xét ΔMEB và ΔMCF có

góc MEB=góc MCF

góc M chung

=>ΔMEB đồng dạng với ΔMCF

=>ME/MC=MB/MF

=>ME/MB=MC/MF

=>ΔMEC đồng dạng với ΔMBF

=>góc MCE=góc MFB