Tìm giá trị nhỏ nhất của đa thức: A= x^2 -6x + 2009 Mình đang cần gấp!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
\(A=\left|x-10\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=10
ta có : x=2010
->x-1=2009
A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1
A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1
A(x)=x+1=2010+1=2011
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=\dfrac{5x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}=\dfrac{1}{x^2}-\dfrac{1}{x}+5=\left(\dfrac{1}{x^2}-\dfrac{1}{x}+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
\(A_{min}=\dfrac{19}{4}\) khi \(\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\)
A=x^2-2.x.3+9+2000
=(x-3)^2+2000
Bước này bạn tự suy luận ra rồi kết luận là xong