Cho S=1+2+22+...+22005
a, So sánh S với 5.22014
b, S có chia hết cho 3 ko?
Bạn nào giải giúp mềnh với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S=1+2+22+...+22005
a, So sánh S với 5.22014
b, S có chia hết cho 3 ko?
Bạn nào giải giúp mềnh với ạ
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
\(S=1+2+2^2+....+2^{50}\)
\(2S=2+2^2+2^3+....+2^{51}\)
\(2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(S=2^{51}-1\)
Vì \(2^{51}-1< 2^{51}\)
\(\Rightarrow S< 2^{51}\)
\(2S=2+2^2+.........+2^{51}\)
\(2S-S=\left(2+2^2+.......+2^{51}\right)-\left(1+2+.......+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S<251
ta có
a :28 = x dư 22 =>a=x.28+22
b:14 =y dư 13 => b=y.14+13
=>a+b=x.28+22+y.14+13=x.28+y.14+35
vì x.28 chia hết cho 7
y.14 chia hết cho 7
35 chia hết cho 7
nên x.28+y.14+35 chia hết cho 7 hay a+b chia hết cho 7
Bạn làm khác mình nhưng kết quả đúng rồi ^^ k bn nè
S=1+2+2^2+2^3+....+2^59 chia hết cho 3
S=(1+2)+(2^2+2^3)+..+(2^58+2^59)
S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)
S=1x3+2^2x3+....+2^58x3
S=3x(1+2^2+.....+2^58)chia hết cho 3
Vậy S chia hết cho 3
tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số
you học lớp mấy
bn liệt kê ra mk đã lk và mk chắc chắn 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
là nó có hơn 1 số
1. S = 1 + 2 + 2^2 +.........+ 2^59
2S = 2 + 2^2 + ...........+ 2^59 + 2 ^60
2S - S = (2 + 2^2 +.........+ 2^60) - (1 +2 + 2^2 +..........+ 2^59)
S = 2^60 - 1
mà 2^60 -1 = 2^60 - 1 => S = 2^60 -1
2.
Ta có : S = 1 + 2 +..............+ 2^59
S = 1(1 +2) + 2^2(1 +2 ) +........+ 2^58(1 +2)
S = 1.3 + 2^2.3 +...............+ 2^58.3
S = 3.(1 + 2^2 +.............+2^58) nên S chia hết cho 3
Cứ như vậy bạn nhóm các số hạng của S để tạo thành tổng có kết quả là 7 và 15 rồi tự chứng minh nhé