Phân tích đa thức thành nhân tử
x2+y2-x2y2+xy-x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu rùi
bài này khó quá nguyen truong giang
chúc bn học tốt
nhae$
hihi
x2 + y2 - x2y2 + xy - x - y
=(x2-x2y2)+(y2-y)+(xy-x)
=x2(1-y)(1+y)-y(1-y)-x(1-y)
=(1-y)(x2+x2y-x-y)
=(1-y)[(x2-y)+(x2-x)]
=(1-y)[y(x-1)(x+1)+x(x-1)]
=(1-y)(x-1)(xy+x+y)
x2 + y2 - x2y2 + xy - x - y = (x2-x) + (y2-y) + (-x2y2 + xy) = x(x+1) + y(y+1) + xy(xy+1) = ( x+ y+ xy)( x + 1 + y + 1 + xy + 1)
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
\(x^2+x+\dfrac{1}{4}-\dfrac{1}{4}+4=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\)(vô lí)
Vậy pt vô nghiệm
\(x^2+y^2-x^2y^2+xy-x-y\)
\(=\left(x^2-x^2y^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)
\(=x^2\left(y-1\right)\left(-1-y\right)+y\left(y-1\right)+x\left(y-1\right)\)
\(=\left(y-1\right)\left(-x^2-x^2y+y+x\right)\)
\(=\left(y-1\right)\left[-x\left(x-1\right)-y\left(x-1\right)\left(x+1\right)\right]\)
\(=\left(y-1\right)\left(x-1\right)\left(-x-xy-y\right)\)
\(=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+1\right)\left(x+4\right)\)
Ta có: \(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=x\left(x-5\right)+3\left(x-5\right)\)
\(=\left(x-5\right)\left(x+3\right)\)
x2 + 4z2 - 4t2 - 4xt
= x2 - 4xt - 4t2 + 4z2
= 4t2 - 4xt + x2 + 4z2
= (2t - x)2 + 4z2
= \(-\left[\left(2t-x\right)^2-4z^2\right]\)
= \(-\left(2t-x-4z\right)\left(2t-x+4z\right)\)
Lm sao bn ra \(\left(2t-x\right)^2+4z^2=-\left[\left(2t-x\right)^2-4z^2\right]\) hay z?
\(x^2+y^2-x^2y^2+xy-x-y\)
\(=x^2-x^2y^2+y^2-y+xy-x\)
\(=x^2\left(1-y^2\right)+y\left(y-1\right)+x\left(y-1\right)\)
\(=x^2\left(1-y\right)\left(y+1\right)+y\left(y-1\right)+x\left(y-1\right)\)
\(=\left(y-1\right)\left[-x^2\left(y+1\right)+y-x\right]\)
\(=\left(y-1\right)\left[-x^2y-x^2+y-x\right]\)