K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

TFBOYS 

Tứ diệp thảo

cỏ bốn lá

Vương Tuấn Khải :9/11/1999 (9x)

Vương Nguyên :8/11/2000(10x)

Dịch Dương Thiên Tỉ :28/11/2000(10x)

The Fighting Boys

Hẹn ước 10 năm 

Karry biệt danh là : Nam thần karry ,Tiểu bàng giải , Cua nhỏ , anh đao .................

Roy biệt danh là: Tiểu thang viên , trôi nhi , nguyên nhi ,...........

Jackson biệt danh là : Thiên Chỉ Hạc , Thiên Thiên , Học bá , hạc nhỏ , cục bông , đùi gà ,.............

Mình là : fan KT

17 tháng 12 2016

P=3a-2b\2a+5 + 3b-a\b-5

=2a+a-2b\2a-5 + -a+2b+b\b-5

=2a+(a-2b)\2a-5 + -(a-2b)+b

=2a+5\2a-5 + -5+b\b-5

=-(2a-5)\(2a-5) + (b-5)\(b-5)

=-1+1=0

17 tháng 12 2016

Bài của mình đây , ko biết có đúng ko

3 tháng 7 2021

\(P=\dfrac{a}{4-3a}+\dfrac{b}{4-3b}+\dfrac{c}{4-3c}=\dfrac{a^2}{4a-3a^2}+\dfrac{b^2}{4b-3b^2}+\dfrac{c^2}{4c-3c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)-3\left(a^2+b^2+c^2\right)}\) (BĐT Cauchy-Schwarz)

\(=\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\)

Ta có: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow4-3\left(a^2+b^2+c^2\right)\le4-\left(a+b+c\right)^2=4-1=3\)

\(\Rightarrow\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow P_{min}=\dfrac{1}{3}\) khi \(a=b=c=\dfrac{1}{3}\)

3 tháng 7 2021

Casch2:đặt \(\left\{{}\begin{matrix}4-3a=x\\4-3b=y\\4-3c=z\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}a=\dfrac{4-x}{3}\\b=\dfrac{4-y}{3}\\c=\dfrac{4-z}{3}\end{matrix}\right.\)\(x+y+z=9\)

\(=>P=\dfrac{4-x}{3x}+\dfrac{4-y}{3y}+\dfrac{4-z}{3z}=\dfrac{4}{3x}+\dfrac{4}{3y}+\dfrac{4}{3z}-\left(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)\)

\(=\dfrac{\left(2+2+2\right)^2}{3.9}-1=\dfrac{4}{3}-1=\dfrac{1}{3}\)

dấu"=" xảy ra<=>x=y=z=3<=>a=b=c=1/3

 

\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)

\(=-2a+3b-4c+2a+3b+4c\)

\(=6b\)

b) Khi \(a=2012,b=-1,c=-2013\) ta có :

\(A=6b=6\cdot\left(-1\right)=-6\)

Vậy \(A=-6\) khi \(a=2012,b=-1,c=-2013\)

Giải:

a) \(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\) 

\(A=-2a+3b-4c+2a+3b+4c\) 

\(A=\left(-2a+2a\right)+\left(3b+3b\right)+\left(-4c+4c\right)\)

 \(A=0+2.3b+0\) 

\(A=6b\)

b) Ta thay: \(a=2012;b=-1;c=-2013\) 

Ta có:

\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\) 

\(A=\left(-2.2012+-3.1--4.2013\right)-\left(-2.2012--3.1--4.2013\right)\) 

\(A=\left(-2.2012-3.1+4.2013\right)-\left(-2.2012+3.1+4.2013\right)\)

\(A=-2.2012-3.1+4.2013+2.2012-3.1-4.2013\) 

\(A=\left(-2.2012+2.2012\right)+\left(-3.1-3.1\right)+\left(4.2013-4.2013\right)\) 

\(A=0+2.-3.1+0\) 

\(A=-6\)

9 tháng 3 2016

tự làm nhé,dễ lắm

27 tháng 4 2017

bài này khó đấy