cho a/a' = b/b' = c/c' =4 hãy tính giá trị của biểu thức a-3b+c/a'-3b+c'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TFBOYS
Tứ diệp thảo
cỏ bốn lá
Vương Tuấn Khải :9/11/1999 (9x)
Vương Nguyên :8/11/2000(10x)
Dịch Dương Thiên Tỉ :28/11/2000(10x)
The Fighting Boys
Hẹn ước 10 năm
Karry biệt danh là : Nam thần karry ,Tiểu bàng giải , Cua nhỏ , anh đao .................
Roy biệt danh là: Tiểu thang viên , trôi nhi , nguyên nhi ,...........
Jackson biệt danh là : Thiên Chỉ Hạc , Thiên Thiên , Học bá , hạc nhỏ , cục bông , đùi gà ,.............
Mình là : fan KT
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
\(P=\dfrac{a}{4-3a}+\dfrac{b}{4-3b}+\dfrac{c}{4-3c}=\dfrac{a^2}{4a-3a^2}+\dfrac{b^2}{4b-3b^2}+\dfrac{c^2}{4c-3c^2}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)-3\left(a^2+b^2+c^2\right)}\) (BĐT Cauchy-Schwarz)
\(=\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\)
Ta có: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow4-3\left(a^2+b^2+c^2\right)\le4-\left(a+b+c\right)^2=4-1=3\)
\(\Rightarrow\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\ge\dfrac{1}{3}\)
\(\Rightarrow P_{min}=\dfrac{1}{3}\) khi \(a=b=c=\dfrac{1}{3}\)
Casch2:đặt \(\left\{{}\begin{matrix}4-3a=x\\4-3b=y\\4-3c=z\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}a=\dfrac{4-x}{3}\\b=\dfrac{4-y}{3}\\c=\dfrac{4-z}{3}\end{matrix}\right.\)\(x+y+z=9\)
\(=>P=\dfrac{4-x}{3x}+\dfrac{4-y}{3y}+\dfrac{4-z}{3z}=\dfrac{4}{3x}+\dfrac{4}{3y}+\dfrac{4}{3z}-\left(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{\left(2+2+2\right)^2}{3.9}-1=\dfrac{4}{3}-1=\dfrac{1}{3}\)
dấu"=" xảy ra<=>x=y=z=3<=>a=b=c=1/3
\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)
\(=-2a+3b-4c+2a+3b+4c\)
\(=6b\)
b) Khi \(a=2012,b=-1,c=-2013\) ta có :
\(A=6b=6\cdot\left(-1\right)=-6\)
Vậy \(A=-6\) khi \(a=2012,b=-1,c=-2013\)
Giải:
a) \(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)
\(A=-2a+3b-4c+2a+3b+4c\)
\(A=\left(-2a+2a\right)+\left(3b+3b\right)+\left(-4c+4c\right)\)
\(A=0+2.3b+0\)
\(A=6b\)
b) Ta thay: \(a=2012;b=-1;c=-2013\)
Ta có:
\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)
\(A=\left(-2.2012+-3.1--4.2013\right)-\left(-2.2012--3.1--4.2013\right)\)
\(A=\left(-2.2012-3.1+4.2013\right)-\left(-2.2012+3.1+4.2013\right)\)
\(A=-2.2012-3.1+4.2013+2.2012-3.1-4.2013\)
\(A=\left(-2.2012+2.2012\right)+\left(-3.1-3.1\right)+\left(4.2013-4.2013\right)\)
\(A=0+2.-3.1+0\)
\(A=-6\)