K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên MO là trung trực của AC

=>MO vuông góc AC tại E

góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

góc ADM=góc AEM=90 độ

=>AMDE nội tiếp

b: ΔMAB vuông tại A có AD là đường cao

nên MA^2=MD*MB

a: góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc AEM=góc ADM=90 độ

=>AEDM nội tiếp

b: Xét ΔMAB vuông tại A có AD vuông góc MB

nên MA^2=MD*MB

a: Xét ΔMAO và ΔMCO có

MA=MC

AO=CO

MO chung

=>ΔMAO=ΔMCO

=>góc MCO=90 độ

góc MAO+góc MCO=180 độ

=>MAOC nội tiếp đường tròn đường kính MO

=>I là trung điểm của MO

b: góc MCO=90 độ

=>MC là tiếp tuyến của (O)

Xét ΔMCD và ΔMBC có

góc MCD=góc MBC

góc CMD chung

=>ΔMCD đồng dạng với ΔMBC

=>MC/MB=MD/MC

=>MC^2=MB*MD

15 tháng 10 2023

a: Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC(1)

Xét (O) có

ΔACB nội tiếp

AB làđường kính

Do đo: ΔACB vuông tại C

=>AC vuông góc CB

=>\(AC\perp DB\left(2\right)\)

Từ (1), (2) suy ra DB//MO

Xét ΔABD có

O là trung điểm của AB

OM//DB

Do đó; M là trung điểm của AD
b:

Gọi I là giao điểm của MB với CH

CH\(\perp\)AB

DA\(\perp\)AB

Do đó: CH//DA

Xét ΔBDA có CH//DA

nên \(\dfrac{CH}{DA}=\dfrac{BH}{BA}\)

=>\(CH=\dfrac{BH}{BA}\cdot DA\)

Xét ΔBMA có IH//AM

nên \(\dfrac{IH}{AM}=\dfrac{BH}{BA}\)

=>\(IH=AM\cdot\dfrac{BH}{BA}\)

\(\dfrac{CH}{IH}=\dfrac{\dfrac{BH}{BA}\cdot DA}{\dfrac{BH}{BA}\cdot AM}=\dfrac{DA}{AM}=2\)

=>CH=2IH

=>I là trung điểm của CH

16 tháng 10 2023

em cảm ơn ạ

15 tháng 10 2023

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là đường trung trực của AC

=>OM vuông góc AC (1)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC vuông góc DB(2)

Từ (1), (2) suy ra MO//DB

Xét ΔADB có

O là trung điểm của AB

OM//DB

Do đó: M là trung điểm của AD

4 tháng 4 2023

loading...

a: Xét (O) có

MA.MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc ADB=1/2*180=90 độ

=>góc ADM=90 độ=góc AEM

=>AMDE nội tiếp

b: AMDE nội tiếp

=>góc ADE=góc AMO=góc ACO

a: góc MAO+góc MCO=180 độ

=>MAOC nội tiếp

góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc ADM=góc AEM=90 độ

=>AEDM là tứ giác nội tiếp

NV
21 tháng 12 2020

\(\widehat{IAF}=\widehat{CAF}\)

\(\widehat{CFA}+\widehat{CAF}=90^0\)

\(\widehat{BAF}+\widehat{IAF}=90^0\)

\(\Rightarrow\widehat{CFA}=\widehat{BAF}\)

c.

O là trung điểm AB, G là trung điểm AI \(\Leftrightarrow\) OG là đường trung bình ABI

\(\Rightarrow OG//BI\Rightarrow OG\perp AC\)

Mà \(OA=OC\Rightarrow OG\) là trung trực AC

\(\Rightarrow AG=CG\Rightarrow CG\) là tiếp tuyến