Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC(1)
Xét (O) có
ΔACB nội tiếp
AB làđường kính
Do đo: ΔACB vuông tại C
=>AC vuông góc CB
=>\(AC\perp DB\left(2\right)\)
Từ (1), (2) suy ra DB//MO
Xét ΔABD có
O là trung điểm của AB
OM//DB
Do đó; M là trung điểm của AD
b:
Gọi I là giao điểm của MB với CH
CH\(\perp\)AB
DA\(\perp\)AB
Do đó: CH//DA
Xét ΔBDA có CH//DA
nên \(\dfrac{CH}{DA}=\dfrac{BH}{BA}\)
=>\(CH=\dfrac{BH}{BA}\cdot DA\)
Xét ΔBMA có IH//AM
nên \(\dfrac{IH}{AM}=\dfrac{BH}{BA}\)
=>\(IH=AM\cdot\dfrac{BH}{BA}\)
\(\dfrac{CH}{IH}=\dfrac{\dfrac{BH}{BA}\cdot DA}{\dfrac{BH}{BA}\cdot AM}=\dfrac{DA}{AM}=2\)
=>CH=2IH
=>I là trung điểm của CH
a: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên MO là trung trực của AC
=>MO vuông góc AC tại E
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
góc ADM=góc AEM=90 độ
=>AMDE nội tiếp
b: ΔMAB vuông tại A có AD là đường cao
nên MA^2=MD*MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là đường trung trực của AC
=>OM vuông góc AC (1)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC vuông góc DB(2)
Từ (1), (2) suy ra MO//DB
Xét ΔADB có
O là trung điểm của AB
OM//DB
Do đó: M là trung điểm của AD