Cho tam giác ABC(A = 90 độ) , AM là đường trung tuyến . Biết AB=3cm,AC=4cm a)Tính độ dài AM b)Gọi D là điểm đỗi xứng với A qua M. Tứ giác ABCD là hình gì ? Vì sao? c)Gọi E là điểm đối xứng với M qua AC . Chứng minh tứ giác AMCE là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=20cm
=>AM=10cm
b: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
a: BC=20cm
=>AM=10cm
b: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
Giải thích các bước giải:
ta có: Tam giác ABC vuông tại A (gt)
=> AB^2+AC^2=BC^2
6^2+8^2 =BC^2
36+64 =BC^2
100 =BC^2
=>BC=10cm
Tam giác ABC vuông tại A có Am là đg trung tuyến
=> AM=BC/2=10/2=5cm
HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ.
Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.
b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.
=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.
Do đó ADMC là hình thang vuông.
c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)
=> D là trung điểm của AB.
Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)
Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)
Từ (1) và (2) => AEBM là hình thoi.
d) Vì AEBM là hình thoi => AE // BM, AE = BM.
Mà BM = MC => AE // MC, AE = MC. Do đó AEMC là hình bình hành.
e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.
Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I.
Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC.
Mà AE // MC, AE = MC (cmt)
=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)
Vậy F đối xứng E qua A.
a: Xét ΔBAC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình của ΔBAC
Suy ra: MD//AC
hay ME\(\perp\)AB
mà ME cắt AB tại trung điểm của ME
nên E và M đối xứng nhau qua AB
b: Xét tứ giác AEMC có
AC//ME
AC=ME
Do đó: AEMC là hình bình hành
a) Ta có MB = MC, DB = DA
⇒ MD là đường trung bình của ΔABC
⇒ MD // AC
Mà AC ⊥ AB
⇒ MD ⊥ AB.
Mà D là trung điểm ME
⇒ AB là đường trung trực của ME
⇒ E đối xứng với M qua AB.
b) + MD là đường trung bình của ΔABC
⇒ AC = 2MD.
E đối xứng với M qua D
⇒ D là trung điểm EM
⇒ EM = 2.MD
⇒ AC = EM.
Lại có AC // EM
⇒ Tứ giác AEMC là hình bình hành.
+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.
Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.
c) Ta có: BC = 4cm ⇒ BM = 2cm
Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm
d)- Cách 1:
Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC
Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.
- Cách 2:
Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM
⇔ ΔABC có trung tuyến AM là đường cao
⇔ ΔABC cân tại A.
Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên AM=BM=CM=BC/2
Xét tứ giác AMBE có
D là trung điểm của đường chéo AB
D là trung điểm của đường chéo ME
Do đó: AMBE là hình bình hành
mà AM=BM
nên AMBE là hình thoi
a)
Ta có: M và E đối xứng với nhau qua D(gt)
nên D là trung điểm của ME
Xét ΔABC có
M là trung điểm của BC(AM là đường trung tuyến ứng với cạnh BC trong ΔABC)
D là trung điểm của AB(gt)
Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay MD//AC và \(MD=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E\(\in\)MD và \(MD=\dfrac{ME}{2}\)(D là trung điểm của ME)
nên ME//AC và ME=AC
Xét tứ giác AEMC có
ME//AC(cmt)
ME=AC(cmt)
Do đó: AEMC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác ABFC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AF(A và F đối xứng nhau qua M)
Do đó: ABFC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABFC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABFC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)