K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

a, \(\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right):\left(x+\frac{x}{x-1}\right)\)

\(=\left(\frac{x^3+1}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x\left(x-1\right)}{x-1}+\frac{x}{x-1}\right)\)

\(=\left(\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x\left(x-1\right)+x}{x-1}\right)\)

\(=\left(\frac{\left(x+1\right)\left[x^2-x+1-x^2+1\right]}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x^2}{x-1}\right)\)

\(=\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x^2}=\frac{2-x}{x^2}\)

b, Ta có : A = 3 hay  \(\frac{2-x}{x^2}=3\)

\(3x^2=2-x\Leftrightarrow3x^2+x-2=0\)

\(\Leftrightarrow3x^2+3x-2x-2=0\Leftrightarrow\left(x+1\right)\left(3x-2\right)=0\Leftrightarrow x=-1;\frac{2}{3}\)

11 tháng 12 2020

a,\(A=\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right)\div\left(x+\frac{x}{x-1}\right)\)

\(=\left(\frac{x^3+1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x^2-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\div\left(\frac{x\left(x-1\right)}{x-1}+\frac{x}{x-1}\right)\)

\(=\left(\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right)\div\left(\frac{x\left(x-1\right)+x}{\left(x-1\right)}\right)\)

\(=\left(\frac{\left(x+1\right)\left(x^2-x+1-x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\right)\div\left(\frac{x^2}{x-1}\right)\)

\(=\left(\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{x^2}{x-1}\)

\(=\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{x^2}\)

\(=\frac{\left(x+1\right)\left(2-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^2}=\frac{2-x}{x^2}\)

10 tháng 4 2019

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{8}{x^2-1}\right):\left(\frac{1}{x-1}-\frac{7x+3}{1-x^2}\right)\)

\(A=\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x+1\right)\left(x-1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}\right]:\left[\frac{x+1}{\left(x+1\right)\left(x-1\right)}-\frac{3-7x}{\left(x+1\right)\left(x-1\right)}\right]\)

\(A=\left[\frac{x^2+2x+1-x^2+2x-1+8}{\left(x+1\right)\left(x-1\right)}\right]:\frac{x+1-3+7x}{\left(x+1\right)\left(x-1\right)}\)

\(A=\frac{4x+8}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{8x-2}\)

...................... 

10 tháng 4 2019

tìm giá trị x nguyên để A nguyên đi

7 tháng 9 2019

PLEASE HELP ME !!!

24 tháng 1 2020

a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\)\(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)

+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)

\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)

+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)

+) \(x+1\ne0\Leftrightarrow x\ne-1\)

+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)

\(\Leftrightarrow x\ne0;x\ne-2\)

+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)

Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)

24 tháng 1 2020

a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)

\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)

\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)

b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)

Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x-2-6-3-2-11236
x-4-1013458

Vậy ............................

25 tháng 11 2019

a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)

A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)

b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)

Để A \(\in\)Z <=> 2 \(⋮\)x - 1

<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){2; 0; 3; -1}

c) Ta có: A < 0

=> \(\frac{x+1}{x-1}< 0\)

=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\) 

=> -1 < x < 1

25 tháng 11 2019

Edogawa Conan

Thiếu dòng đầu  \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)

28 tháng 11 2018

ĐKXĐ : \(x\ne\pm3\)

a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)

\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)

\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)

\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)

\(A=\frac{4x+1}{2\left(x-3\right)}\)

b) \(\left|x-5\right|=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)

Mà ĐKXĐ x khác 3 => ta xét x = 7

\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)

c) Để A nguyên thì 4x + 1 ⋮ 2x - 3

<=> 4x - 6 + 7 ⋮ 2x - 3

<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3

Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3

=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }

=> x thuộc { 2; 1; 5; -2 }

Vậy .....

28 tháng 11 2018

a)   ĐKXĐ: \(x\ne\pm3\)

   \(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)

 \(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)

\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)

\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)

b)

  Có 2 trường hợp:

T.Hợp 1:

               \(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)

thay vào A ta được: A=\(-\frac{13}{8}\)

T.Hợp 2:

          \(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)

Vậy không tồn tại giá trị của A tại x=3

Vậy với x=7 thì A=-13/8

c)

      \(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)

Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)

Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .

Vậy không có giá trị nguyên nào của x để A nguyên