K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

undefined

11 tháng 12 2020

mong mọi người giúp hộ mình

a: D đối xứng M qua AB

nên AD=AM; BD=BM và DM vuông góc với AB

Xét tứ giác AIDE có

góc AID=góc AED=góc EAI=90 độ

Do đó: AIDE là hình chữ nhật

b: AD=AM

BD=BM

mà AD=BD

nên AD=AM=BD=BM

=>ADBM là hình thoi

c: AI=AB/2=3cm

AE=AC/2=4,5cm

SAIDE=3*4,5=13,5cm2

2 tháng 1 2023

Kẻ hình nữa đc ko ạ 

3 tháng 11 2021

aai giúp mik bài nầy vs ạ

 

 

3 tháng 11 2021

ae lm dcd thì gúp vs nghe

 

27 tháng 12 2021

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)

Do đó: ANMP là hình chữ nhật

23 tháng 12 2016

a)

D là trung điểm của BC (gt)

mà DF // AB (AB _I_ AC; DF _I_ AC)

=> F là trung điểm của AC

mà D là trung điểm của BC (gt)

=> DF là đường trung bình của tam giác CAB

=> DF = \(\frac{1}{2}\)AB = 10 : 2 = 5 (cm)

b)

D là trung điểm của BC

mà DE // AC (DE _I_ AB; AC _I_ AB)

=> E là trung điểm của AB

mà E là trung điểm của MD (M đối xứng D qua AB)

=> ADBM là hình bình hành

mà AB _I_ MD (M đối xứng D qua AB)

=> ADBM là hình thoi

c)

DEA = EAF = AFD = 900

=> AEFD là hình chữ nhật

=> AEFD là hình vuông

<=> AD là tia phân giác của BAC

mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)

=> Tam giác ABC vuông cân tại A

23 tháng 12 2016

Bạn tự vẽ hình nha!!!

Ta có:

\(AC \perp AB\) (\(\Delta ABC\) vuông tại A (gt))

\(AC \perp DF\) (gt)

\(\Rightarrow\) AB // DF (Định lí 1 bài từ vuông góc đến song song)

mà D là trung điểm BC (gt)

\(\Rightarrow\) F là trung điểm của AC (Định lí 1 bài đường trung bình của tam giác)

Xét \(\Delta ABC\) có:

D là trung điểm BC (gt)

F là trung điểm của AC (cmt)

\(\Rightarrow\) DF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DF=\frac{AB}{2}=\frac{10}{2}=5\left(cm\right)\)

b) Chứng minh tương tự ta có E là trung điểm AB

Xét tứ giác ADBM có:

\(\Rightarrow EM=ED\) (M đối xứng với D qua AB (gt))

\(EA=EB\left(cmt\right)\)

MD giao AB tại E (gt)

\(\Rightarrow\) Tứ giác ADBM là hình bình hành (dhnb)

\(AB \perp MD\) (M đối xứng với D qua AB (gt))

\(\Rightarrow\) Tứ giác ADBM là hình thoi (dhnb)

c) Xét tứ giác AEDF có:

\(\widehat{EAF} = 90^0\) (\(\Delta ABC\) vuông tại A (gt))

\(\widehat{AED} = 90^0\) (\(MD \perp AB\))

\(\widehat{AFD} = 90^0\) (\(DF \perp AC\))

\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật (dhnb)

Để hình chứ nhật AEDF

\(\Leftrightarrow\) AEDF là hình thoi

\(\Leftrightarrow\) AD là tia phân giác của \(\Delta ABC\) (vì AD là đường trung tuyến)

\(\Leftrightarrow\) \(\Delta ABC\) cân tại A (vì \(\Delta ABC\) vuông tại A (gt))

\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A

 

29 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác AEDF là hình chữ nhật

⇒ DE // AC; DF // AB

Trong ∆ ABC, ta có: DB = DC (gt)

Mà DE // AC

Suy ra: AE = EB (tính chất đường trung bình của tam giác)

Lại có: DF // AB và DB = DC

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM, ta có: AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

Mặt khác: AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)

Xét tứ giác ADCN, ta có: AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Lại có: AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)