Tìm số tự nhiên n nhỏ nhất để các phân số sau đây tối giản: 7/n+9;8/n+9;9/n+11;...;31/n+33
Có cách làm nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phân số đã cho đều có dạng \(\frac{a}{a+\left(n+2\right)}\)
Vì các phân số này tối giản nên n + 2 và a là số nguyên tố cùng nhau
Như vậy n + 2 phải nguyên tố cùng nhau với các số 7;8;9;....;31 và n + 2 là số nhỏ nhất
Vậy n + 2 phải là số nguyên tố nhỏ nhất lớn hơn 31 tức là n + 2 = 37, do đó số n cần phải tìm là 35
Nếu bài là các phân số 7/(n+9), 8/(n+10), 9/(n+11), ... ,31/(n+33) thì đơn giản => (n + 2) không chia hết cho 7, 2, 3, 5, ...., 31, tức không chia hết cho bất cứ số nguyên tố nào <= 31. => (n + 2) nhỏ nhất khi = số nguyên tố nhỏ nhất nhưng > 31 tức = 37 (mọi số giữa 2 số nguyên tố liên tiếp p_k và p_(k+1) do là hợp số nên phải có ít nhất 1 ước số nguyên tố <= p_k nên thậm chí không cần thử xem có nên loại 32, 33, ..., 36 hay không - loại ngay không cần "suy nghĩ") => n = 37 - 2 = 35
\(y=\frac{1}{x^2+\sqrt{x}}\)