Kẻ tia \(IK\perp AB\) biết \(\Delta IBA=\Delta ICA\) và IB//MC. Chứng minh \(IK\perp MC\).
Giups mik làm với ạ tý nữa là mik phải nộp bài rồi. Cảm ơn mn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Gọi O là giao điểm của IP và HK. Chứng minh \(\widehat{MON}\) = 180o + \(\widehat{PMO}+\widehat{PNO}+\widehat{HIK}\)
a: NK=15cm
b: Xét ΔKNI có
KM là đường cao
KM là đường trung tuyến
Do đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
KM chung
góc AKM=góc BKM
Do đo: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//NI
a)Ta có :
Vì Δ MNK vuông M nên NK2 = MN2 + MK2
⇒NK2 = 92 + 122
⇒NK2 = 81 + 144
⇒NK2 = 225
Vậy NK = 15
b)Theo CM trên, ta có :
NK2 = MN2 + MK2
Mà IK2 = MI2 + MK2
MN = MI (gt) ; MK chung
⇒MN2+MK2 = MI2+MK2 hay NK=IK
⇒ΔKNI cân N
c)Ta có :
MK chung(1)
\(\widehat{MAK}=\widehat{MBK}=90^o\)(2)
Xét Δ MNK và Δ MIK, ta có :
MK chung
MI = MN
NK = IK
⇒Δ MNK = Δ MIK(c.c.c)
⇒\(\widehat{MKN}=\widehat{MKI}\)(hai góc tương ứng)(3)
Từ (1), (2) và (3) ⇒ ΔMAK=ΔMBK(cạnh huyền-góc nhọn)
d)Ta thấy : Δ MNK vuông M hay KM ⊥NI+
Gọi điểm C là điểm giao giữa AB và KM, ta có :
\(\widehat{KCA}+\widehat{KCB}=180^o\)*
Xét ΔKCA và ΔKCB, ta có :
AK=BK(ΔMAK=ΔMBK)
CK chung
\(\widehat{CKA}=\widehat{CKB}\)(Δ MNK = Δ MIK)
⇒ΔKCA = ΔKCB(c.g.c)
⇒\(\widehat{CAK}=\widehat{CBK}\)(hai góc tương ứng)**
Từ * và ** ⇒ \(\widehat{CAK}=\widehat{CBK}=90^o\) hay KM ⊥ AB++
Từ + và ++ ⇒ AB // NI
a) Áp dụng định lý pytago vào \(\Delta MNK\) vuông tại M có:
\(NK^2=NM^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK=15\)
b) Xét \(\Delta NMK\) vuông tại M và \(\Delta IMK\) vuông tại M có:
MK chung
\(NM=IM\left(gt\right)\)
\(\Rightarrow\Delta NMK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)
hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\) vuông tại A và \(\Delta MBK\) vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\) (c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\) cân tại K
\(\Rightarrow\) \(\widehat{KAB}=\widehat{KBA}\)
Áp dụng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\dfrac{180^o-\widehat{NKI}}{2}\left(1\right)\) (đoạn này hơi tắt)
Do \(\Delta NMK=\Delta IMK\)
\(\Rightarrow NK=IK\Rightarrow\Delta NKI\) cân tại K
\(\Rightarrow\widehat{KNI}=\widehat{KIN}\)
Áp dng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KNI}+\widehat{KIN}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KNI}=\dfrac{180^o-\widehat{NKI}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{KNI}\)
mà 2 góc này ở vị trí đồng vị nên AB // NI .
a) Ta có: ΔMNK vuông tại M.
\(\Rightarrow NK^2=MN^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK^8=225\)
\(\Rightarrow NK=\sqrt{225}=15\left(cm\right)\)
b) Vì MI là tia đối của tia MN.
\(\Rightarrow\) 3 điểm N, M, I thẳng hàng.
\(\Rightarrow\widehat{M_{12}}=\widehat{M_{34}}\)
Xét ΔMNK và ΔMIK có:
+ MN = MI (gt)
+ \(\widehat{M_{12}}=\widehat{M_{34}}\) (cmt)
+ MK là cạnh chung.
\(\Rightarrow\) ΔMNK = ΔMIK (c-g-c)
\(\Rightarrow\) NK = IK (2 cạnh tương ứng)
\(\Rightarrow\) ΔKNI cân tại K.
Xét ΔMAK và ΔMBK có:
+ \(\widehat{K_1}=\widehat{K_2}\) (ΔMNK = ΔMIK)
+ MK là cạnh chung.
+ \(\widehat{A_1}=\widehat{B_1}=90^o\) (kẻ vuông góc)
\(\Rightarrow\) ΔMAK = ΔMBK (cạnh huyền - góc nhọn)
a) Xét \(\Delta\)AHB vuông tại H và \(\Delta\)AKC vuông tại K có:
AB = AC (\(\Delta\)ABC cân tại A)
\(\widehat{KAH}\) chung
=> \(\Delta\)AHB = \(\Delta\)AKC (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
b) Xét \(\Delta\)AKI vuông tại K và \(\Delta\)AHI vuông tại H có:
AI chung
AK = AH (cmt)
=> \(\Delta\)AKI = \(\Delta\)AHI (cạnh huyền - cạnh góc vuông)
=> IK = IH (2 cạnh tương ứng)
Câu 1:
a: =>|2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>2x=4 hoặc 2x=-6
=>x=2 hoặc x=-3
b: \(\Leftrightarrow\left[{}\begin{matrix}3x-2=x+1\\3x-2=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=1\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{1}{4}\right\}\)
Bài 2:
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nênI là trung điểm của AB
=>IA=IB
b: IA=IB=AB/2=6cm
\(IC=\sqrt{10^2-6^2}=8\left(cm\right)\)