K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

Đáp án B

Gọi H  là tâm của tam giác đều  A B C ⇒ S H ⊥ A B C .

Gọi M  là trung điểm của B C .

Ta có A M = 3 a 3 2 ;   A H = 2 3 A M = a 3 .

Xét tam giác S A H :   S H = S A 2 − A H 2 = a 6 . Vậy h = d S ; A B C = S H = a 6 .

27 tháng 7 2017

21 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a

Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

18 tháng 1 2019

Đáp án C

Tam giác SAD đều cạnh 2 a ⇒ S H = a 3 ⇒ H C − 2 a 3 .  

Kẻ BK vuông góc H C ⇒ B K ⊥ S H C ⇒ B K − 2 a 6  

Diện tích tam giác BHC là S Δ B H C = 1 2 B K . H C = 6 a 2 2  

Mà S A B C D = S Δ H A B + S Δ H C D + S Δ H B C = 1 2 S A B C D + S Δ H B C ⇒ S A B C D = 2   x   S Δ H B C = 12 a 2 2  

V S . A B C D = 1 3 . S H . S Δ H B C = 1 3 . a 3 .12 a 2 2 = 4 6 a 3  

9 tháng 6 2019

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).

Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Vậy khoảng cách từ S đến (ABC ) là a.

Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).

Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)

\(AN=\sqrt{AB^2-BN^2}\) \(=\) \(\sqrt{\left(3a\right)^2-\left(\dfrac{3a}{2}\right)^2}\) \(=\) \(\dfrac{3a\sqrt{3}}{2}\)

Vậy khoảng cách từ S đến (ABC ) là a.

 

18 tháng 5 2019

Đáp án B

Gọi H là trung điểm của AD, vì ΔASD cân ở S nên SH AD.

Vì (SAD)(ABCD) nên SH (ABCD). K HI SD.

Vì DC AD, DC SH nên DC (SAD). Do đó DC HI.

Kết hợp với HI SD, suy ra HI (SDC).

Vì AB // (SDC) nên d(B; (SDC)) = d(A; (SDC)) = 2HI

Ta có

 

Ta lại có

3 tháng 3 2019

a) Gọi O là tâm của đáy ABCD, M là giao điểm của SO và mặt phẳng (P). Ta có: OM = 2(cm).

Ta tính được O B   =   2 2 c m rồi suy ra SO = 5 (cm)

Từ đó chiều cao cần tìm là: SM = SO - OM 3 (cm)

b) Gọi I là trung điểm của BC. E, F, J lần lượt là giao điểm của SB, SC, SI với mặt phẳng (p).

23 tháng 3 2018

Đáp án C