K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

13 tháng 8 2016

1.4m+7n=0

=>4m=-7n

=>mx2-4m=0

=>m(x2-4)=0

=>m=0 hoặc x=2 hoặc x=-2

11 tháng 12 2017

Đáp án A

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

ở bước đầu giải hệ theo m, bạn ko nên nhân với m vì nếu m=0 thì sẽ không giải được

14 tháng 12 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

16 tháng 6 2017

 

Đáp án A.

Cách 1:

 

Do các mặt của tứ diện có diện tích bằng nhau nên

Kiểm tra các trường hợp chỉ có bốn điểm thỏa mãn.

31 tháng 3 2019

9 tháng 1 2019

Đặt \(\dfrac{x}{m} + \dfrac{y}{n} + \dfrac{z}{p} = k\)

<=> \(\dfrac{x}{m} =k <=> x = mk \)

<=> \(\dfrac{y}{n} = k <=> y =nk\)

<=> \(\dfrac{z}{p} = k <=> z = pk\)

Thay \(x = mk ; y=nk ; z=pk\) vào A , ta có :

\(\dfrac{(mk)^2+(nk)^2+(pk)^2}{(m^2k+n^2+p^2k)^2}\)

= \(\dfrac{m^2k^2+n^2k^2+p^2k^2}{(m^4k^2+n^4k^2+p^4k^2+2m^2n^2k^2+2n^2p^2k^2+2m^2p^2k^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^4+n^4+p^4+2m^2n^2+2n^2p+2m^2p^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^2+n^2+p^2)^2}\)

= \(\dfrac{1}{m^2+n^2+p^2} \)

Vậy A = \(\dfrac{1}{m^2+n^2+p^2}\)

24 tháng 10 2019

Đáp án C.

Ta có  x + y + z = 3 ⇔ x 3 + y 3 + z 3 = 1   . Suy ra tập hợp các điểm   M x ; y ; z là 8 mặt chắn có phương trình: ;

x 3 + y 3 + z 3 = 1 ; x − 1 + y − 3 + z − 3 = 1 ; x − 3 + y − 3 + z 3 = 1

x − 3 + y 3 + z − 3 = 1 ; x 3 + y − 3 + z − 3 = 1 ; x − 3 + y 3 + z 3 = 1 ; x 3 + y − 3 + z 3 = 1 ; x 3 + y 3 + z − 3 = 1

Các mặt chắn này cắt các trục Ox, Oy, Oz tại các điểm , A − 3 ; 0 ; 0 , B 3 ; 0 ; 0 , C 0 ; − 3 ; 0 D 0 ; 3 ; 0 , E 0 ; 0 ; − 3 , F 0 ; 0 ; 3 .

Từ đó, tập hợp các điểm  M x ; y ; z    thỏa mãn   x + y + z = 3 là các mặt bên của bát diện đều  x + y + z = 3    (hình vẽ) cạnh bằng 3 2 .

Thể tích khối bát diện đều là   V = 3 2 3 . 2 3 = 36 (đvtt).