Câu 3 a) Chứng minh rằng
Nếu 7x+4y chia hết 37 thì 13x+18y chia hết 37
b) Cho A= \(\frac{1}{2}\)+\(\frac{3}{2}\)+(\(\frac{3}{2}\))2 +(\(\frac{3}{2}\))3+.....+(\(\frac{3}{2}\))2012 và B=( \(\frac{3}{2}\))2013:2
tính B-A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi nha bn!!!
a) Xét hiệu: A = 9.(7x+4y) - 2. (13x+18y)
A = 63x + 36y - 26x - 36y
A = 37x \(\Rightarrow A⋮37\) Vì 7x + 4y chia hết cho 37
9.(7x+4y) chia hết cho 37
Mà A chia hết cho 37
\(2\left(13x+18y\right)⋮37\)
Do 2 và 37 là nguyên tố cùng nhau
13x+18y chia hết cho 37
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
Để \(P\in Z\)thì \(n\in Z\)
\(P=\frac{2n+5}{n+3}\)
\(\Rightarrow P=\frac{2n+6-1}{n+3}\)
\(\Rightarrow P=2+\frac{-1}{n+3}\)
Mà \(n\in Z;-1⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
3. Từ đề bài, ta có :
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\Rightarrow\frac{2x-1}{18}=\frac{3}{y}\)
\(\Rightarrow\left(2x-1\right).y=18.3=54\)
Mà \(2x-1\)là số lè.
\(\Rightarrow\)Ta có bảng sau :
2x - 1 | 1 | 27 | 9 |
y | 54 | 2 | 6 |
x | 1 | 14 | 5 |
Vậy ta tìm được 3 cặp số ( x;y ) thỏa mãn đề bài là : ( 1;54 ) ; ( 14;2 ) ; ( 5;6 )
P/s : Bài 2 k làm được thì ib mk nhé -.-
1)Có 7x+4y chia hết cho 37 =>7x chia hết cho 37 ; 4y chia hết cho 37 (37 là số nguyên tố)
Vì 7 và 4 không chia hết cho 37 => x và y chia hết cho 37
=> 13x chia hết cho 37 ; 18y chia hết cho 37
=> 13x+18y chia hết cho 37
2) A = 1/2+3/2+3/2^2+...+3/2^2012
=>2A = 1+3+3/2+...+3/2^2011
=>A = 4 - (1/2+3/2^2011)
Lấy B - A là xong
Xét tử:
\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)
= \(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
= \(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
= \(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
Thay vào ta có:
A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)
=> A = 2013
Mà 2013 chia hết cho 3
=> A chia hết cho 3
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg
a) 1 + 3 + 32 + 33 + ... + 311
= (1 + 3 + 32 + 33) + ... + (38 + 39 + 310 + 311)
= 40 + ... + 38.(1 + 3 + 32 + 33)
= 40 + ... + 38. 40
= (1 + ... + 38) . 40 \(⋮\)40
b) Ta có: B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
=> B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
=> B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=> B <\(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
=> B < \(1-\frac{1}{100}\)
=> B < 1