K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

Nhân cả 2 vế với 4 ta có:

A × 4 = 1 × 2 × 3 ×4 + 2 × 3 × 4×(5 - 1) + 3 × 4 × 5 × (6 - 2) + ... + 18 × 19 × 20 × (21 - 17).

Khi nhân vào và làm phép trừ để triệt tiêu các số giống nhau ta còn lại là:

 A × 4 = 18 × 19 × 20 × 21

 => A = 18 ×19 × 20 × 21 : 4 = 35910

15 tháng 8 2020

A = \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+..+9\right)}{1\times2+2\times3+3\times4+...+19\times20}\)

 \(=\frac{\frac{1\times\left(1+1\right)}{2}+\frac{2\times\left(2+1\right)}{2}+\frac{3\times\left(3+1\right)}{2}...+\frac{9\times\left(9+1\right)}{2}}{1\times2+2\times3+3\times4+...+19\times20}\)

\(=\frac{\frac{1\times2}{2}+\frac{2\times3}{2}+\frac{3\times4}{2}+...+\frac{9\times10}{2}}{1\times2+2\times3+3\times4+...+9\times10}\)

\(=\frac{\frac{1}{2}\times\left(1\times2+2\times3+3\times4+...+9\times10\right)}{1\times2+2\times3+3\times4+...+9\times10}=\frac{\frac{1}{2}}{1}=\frac{1}{2}\)

11 tháng 5 2015

 

\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x..x\frac{19}{20}=\frac{1x2x3x4x5x...x19}{2x3x4x..x20}\frac{1}{20}\)

11 tháng 5 2015

1/20                             

Bài 1: 

a: Tổng là:

(-19+19)+(-18+18)+...+20=20

b: Tổng là:

-18+(-17+17)+...+0=-18

phiền bn trình bày ra đc k ạ. nếu ko đc thì thôi ạ

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}=\frac{1.2.3...19}{2.3.4...20}=\frac{1}{20}\)

21 tháng 8 2023

\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)

\(=\dfrac{1}{20}\)