K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

Đáp án là B

Gọi K là trọng tâm tam giác ABC, N đỗi xứng với D qua J, qua K  kẻ KO song song với DN ta có O là tâm mặt cầu cần xác định.

2 tháng 8 2018

7 tháng 10 2017

Đáp án là B

22 tháng 11 2019

Chọn đáp án B

23 tháng 12 2019

24 tháng 4 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc 30 ° thì góc của hai mặt phẳng đó chính là góc ∠ SCA. Thực vậy vì SA ⊥ (ABC) mà AC ⊥ CB nên ta có SC ⊥ CB. Do đó ∠SCA = 30 ° .

Vì AB = 2a nên ta có AC = a 2 ta suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi r là bán kính mặt cầu ngoại tiếp tứ diện khi  ∠ SCA = 30 °

Ta có r = SB/2 = OA = OB = OC = OS, trong đó SB 2 = SA 2 + AB 2

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

NV
18 tháng 3 2021

Gọi E là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AE\perp BC\\DE\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ADE\right)\)

Trong tam giác cân ADE (cân tại E), kẻ \(DH\perp AE\Rightarrow DH\perp\left(ABC\right)\)

\(\Rightarrow\widehat{DAE}=45^0\Rightarrow\Delta ADE\) vuông cân tại E 

Gọi G và G' lần lượt là trọng tâm ABC và BCD. Trong mp (ADE), qua G kẻ đường thẳng d song song DE, qua G' kẻ d' song song AE. Gọi O là giao điểm d và d' \(\Rightarrow\) O là tâm mặt cầu ngoại tiếp tứ diện

Ta có: \(AE=DE=\dfrac{a\sqrt{3}}{2}\) ; \(AG=\dfrac{2}{3}AE=\dfrac{a\sqrt{3}}{3}\) ; \(OG=OG'=\dfrac{1}{3}AE=\dfrac{a\sqrt{3}}{6}\)

\(R=OA=\sqrt{AG^2+OG^2}=\dfrac{a\sqrt{15}}{6}\)

24 tháng 6 2018

Chọn A

Phương pháp:

Cách giải:

Mà AH vuông góc (BCD) nên AH là trục của mặt phẳng (BCD).

Gọi K là trung điểm AD, kẻ OK vuông góc với AD, O thuộc AH

21 tháng 1 2017

Đáp án C

Ta có A D 2 = A B 2 + B D 2 = A C 2 + C D 2

⇒ Δ A B D , Δ A C D vuông cân tại B, C

Mà O là trung điểm cạnh A D ⇒ O A = O B − O C

⇒ O là tâm mặt cầu ngoại tiếp tứ diện ABCD.

Dễ thấy O A = O B − O C  và  Δ A B C  đều cạnh a

khối chóp O . A B C  là hình chóp tam giác đều

19 tháng 7 2019

Đáp án đúng : D