K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

30 tháng 1 2016

Đặt (a;c)=q thì a=qa1;c=qc1 (Vs (a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1
Dẫn đến d⋮a1 đặt d=a1d1 thay vào đc:
b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)
là hợp số (QED) 

21 tháng 7 2015

a+b = c+d => a = c+d-b 
Thay vào ab+1 = cd 
=> (c+d-b).b+1 = cd 
<=> cb+db-cd+1-b2 = 0 
<=> b(c-b)-d(c-b)+1 = 0 
<=> (b-d)(c-b) = -1 
a,b,c,d,nguyên nên b-d và c-b nguyên 
Mà (b-d)(c-b) = -1 nên ta xét 2 trường hợp: 
TH1: b-d = -1 và c-b = 1 
<=> d = b+1 và c = b+1 
=> c = d 
TH2: b-d = 1 và c-b = -1 
<=> d = b-1 và c = b-1 
=> c = d 
Vậy c = d.

8 tháng 7 2017

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

8 tháng 7 2017

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

3 tháng 3 2015

nè, mi chơi ki kiểu mất dạy nha.tao bái mi làm sư phụ

9 tháng 4 2017

/ rs6h46sfda$

29 tháng 6 2018

Đặt a+b=x;c+d=ya+b=x;c+d=y ta cần chứng minh :xy+4≥2(x+y)⇔(x−2)(y−2)≥0xy+4≥2(x+y)⇔(x−2)(y−2)≥0

Mặt khác ta luôn có x=a+b≥2√ab=2;y=c+d≥2√cd=2x=a+b≥2ab=2;y=c+d≥2cd=2

Như vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=d=1