K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

30 tháng 1 2016

Đặt (a;c)=q thì a=qa1;c=qc1 (Vs (a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1
Dẫn đến d⋮a1 đặt d=a1d1 thay vào đc:
b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)
là hợp số (QED) 

8 tháng 7 2017

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

8 tháng 7 2017

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

7 tháng 1 2019

d ở đâu

7 tháng 1 2019

minh ko biet co mik cho do

6 tháng 1 2019

\(a+b=c+d\Rightarrow a=c+d-b\)

\(\text{Ta có:}ab+1=cd\)

\(\Leftrightarrow\left(c+d-b\right)b+1=cd\)

\(\Leftrightarrow bc+bd-b^2-cd=-1\)

\(\Leftrightarrow c\left(b-d\right)-b\left(b-d\right)=-1\)

\(\Leftrightarrow\left(b-d\right)\left(c-b\right)=-1\)

\(\text{Vì }b,c,d\in Z\)

\(TH1:\left\{{}\begin{matrix}b-d=1\\c-b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b-1\\c=b-1\end{matrix}\right.\Rightarrow c=d\)

\(TH2:\left\{{}\begin{matrix}b-d=-1\\c-b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b+1\\c=b+1\end{matrix}\right.\Rightarrow d=c\)

\(\text{Vậy }d=c\)

27 tháng 1 2019

a+b=c+da=c+dba+b=c+d⇒a=c+d−b

Ta có:ab+1=cdTa có:ab+1=cd

(c+db)b+1=cd⇔(c+d−b)b+1=cd

bc+bdb2cd=1⇔bc+bd−b2−cd=−1

c(bd)b(bd)=1⇔c(b−d)−b(b−d)=−1

(bd)(cb)=1⇔(b−d)(c−b)=−1

Vì b,c,dZVì b,c,d∈Z

TH1:{bd=1cb=1{d=b1c=b1c=dTH1:{b−d=1c−b=−1⇒{d=b−1c=b−1⇒c=d

TH2:{bd=1cb=1{d=b+1c=b+1d=cTH2:{b−d=−1c−b=1⇒{d=b+1c=b+1⇒d=c

Vy d=c

18 tháng 1 2016

kho that day!!!!!!!!!!!!!!!!!

18 tháng 1 2016

khó thì nói lm j hả cái bác các thím