K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

Ta có :  (2a - b) - (a + b) + (a - b) - (2a - 3b)
            = 2a - b - a - b + a - b  -  2a + 3b  
            = (2a - 2a)+ (a - a) + (b - b - b + 3b) 
            =   0         +   0     +          0
            =                  0
Vậy đẳng thức (2a - b )- (a + b) + (a - b) - (2a - 3b) = 0

4 tháng 3 2020

\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)

\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)

\(\Leftrightarrow\text{0=0}\)

\(\Rightarrow\text{ĐPCM}\)

\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)

\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)

\(-2a+4b-2c=2b\)

\(-2a+4b-2c-2b=0\)

\(-2a+2b-2c=0\)

\(đpcm\) 

 a) Vế trái: Dùng quy tắc chuyển vế

a - b -a  - b + 2a - b - 2a + 3b

= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0

Mà Vế phải = 0

Suy ra hằng đẳng thức đúng

b) Tương tự: Vế trái

a + b - c - a +b - c + b +c - a - b + a + c

= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b

Mà vế phải = 2b

Suy ra hằng đẳng thức đúng :D

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này. 
27 tháng 4 2023

a) a > b

⇒ 2a > 2b (nhân hai vế với 2 > 0)

⇒ 2a - 3 > 2b - 3 (cộng hai vế với -3)

b) a < b

⇒ -3a > -3b (nhân hai vế với -3 < 0)

⇒ -3a + 2 > -3b + 2 (1) (cộng hai vế với 2)

5 > 2

⇒ -3a + 5 > -3a + 2 (2) (cộng hai vế với -3a)

Từ (1) và (2) ⇒ -3a + 5 > -3b + 2

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$

Khi đó:

$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$

$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$

Từ $(1); (2)$ ta có đpcm.

30 tháng 10 2017

\(\left(a-b\right)-\left(a+b\right)+\left(2a-b\right)-\left(2a-3b\right)=0\)

biến đổi vế trái ta dược

=\(a-b-a-b+2a-b-2a+3b\)

\(=\left(a-a+2a-2a\right)+\left(-b-b-b+3b\right)\)

\(=-3b+3b\)

\(=0=vp\)

vậy đẳng thức được chứng minh

( a-b)-(a+b)+(2a-b)-(2a-3b)=0

<=> a-b-a-b+2a-b-2a+3b = 0

<=> 0=0

=> ĐPCM

P/s tham khảo nha

7 tháng 11 2021

\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\Rightarrow\dfrac{2a-3d}{2c-3d}=\dfrac{2a+3b}{2c-3d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

7 tháng 11 2021

chả bt đúng hay sai đây ta???