K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

Đáp án B

Gọi F’,H’ là điểm đối xứng của F,H qua SO

 ( O là tâm của đáy)

⇒ EF'=EF, FH=F'H'

Gọi I,J là điểm đối xứng của A,F’ qua SB

⇒ EF ' = EJ , F ' H ' = H ' J


A E + EF'+F'H'+H'K=AE+EJ + H ' J + H ' K ≥ AJ + K J

Gọi  R là điểm đối xứng của A qua SI  ⇒ AJ = J R

⇒ AJ + K J = J R + K J ≥ K R

Vậy để AE+EF’+F’H’+H’K nhỏ nhất bằng KR thì

H ' J + H ' K = K J A E + EJ = AJ = J R

k = H F + H K E A + EF = H ' F ' + H ' K E A + EF' = K J J R = S K S A = 1 2

30 tháng 7 2018

Đáp án B

Gọi F’,H’ là điểm đối xứng của F,H qua SO ( O là tâm của đáy)

Gọi I,J là điểm đối xứng của A,F’ qua SB

Gọi  R là điểm đối xứng của A qua SI

Vậy để AE+EF’+F’H’+H’K nhỏ nhất bằng KR thì

H'J + H'K = KJ

AE + EJ = AJ = JR

12 tháng 12 2019

11 tháng 1 2018

Đáp án A

Phương pháp:

Trải 4 mặt của hình chóp ra mặt phẳng và tìm điều kiện để A M + M N + N P + P Q  là nhỏ nhất.

Cách giải:

Ta “xếp” 4 mặt của hình chóp lên một mặt phẳng, được như hình bên:

Như hình vẽ ta tháy, để tiết kiệm dây nhất thì các đoạn AM, MN, NP, PQ phải tạo thành một đoạn thẳng AQ.

Lúc này, xét Δ S A Q có:

A S M = M S N = N S P = P S Q = 15 °

S A = 600 m , S Q = 300 m

⇒ k = A M + M N N P + P Q = A N N Q = S A S Q = 2

(Vì A N N Q = S A S Q do tính chất của đường phân giác SN).

10 tháng 1 2018

Đáp án B

 

Trải hình ra ta thu được:

 

Dễ thấy AM + MN + NA đạt giá trị nhỏ nhất khi A, M, N, A thẳng hàng

 

Lại có S.ABC là hình chóp tam giác đều

 

ð ∆SAB = ∆SBC = ∆SAC (c.c.c)

⇒ AS B ^ = B S C ^ = C S A ^ ⇒ AS A ^ = 90 °

AM + MN +  N A m i n = a 2

 

 

 

 

 

 

 

20 tháng 7 2018

Đáp án B

Dễ thấy AM + MN + NA đạt giá trị nhỏ nhất khi A, M, N, A thẳng hàng

Lại có S.ABC là hình chóp tam giác đều

=> ∆SAB = ∆SBC = ∆SAC (c.c.c)

=> AM + MN + NA min =  a 2

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

16 tháng 11 2018

Xác định được 

Vì M là trung điểm SA nên

Kẻ  và chứng minh được  nên 

Trong ∆  vuông MAD tính được 

Chọn A.

22 tháng 4 2019

Chọn D