Tìm số tiếp tuyến song song với trục hoành của đồ thị hàm số y = x 4 − 2 x 2 + 10.
A. 3
B. 0
C. 2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để PTTT tại $x=x_0$ song song với trục hoành thì $f'(x_0)=0$ và $f(x_0)\neq 0$
$f'(x)=4x^3-4x=0\Leftrightarrow x=0;1;-1$
Thử các giá trị $x$ này vô $f(x_0)$ xem có khác $0$ hay không ta thu được $x=\pm 1$
Tức là có 2 tiếp tuyến của $(C)$ song song với trục hoành.
a: Để (d)//Ox thì m-1=0
=>m=1
b: Thay x=-1 và y=1 vào (d), ta được:
-m+1+m=1
=>1=1(luôn đúng)
c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:
\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)
=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)
=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)
=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)
=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Bài 2:
c: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=4 và y=2 vào (d'), ta được:
b-4=2
hay b=6
Đáp án B.
Ta có y ' = 3 x 2 x - 2 - x 3 x - 2 2 = 2 x 2 x - 3 x - 2 2 .
Do tiếp tuyến song song với trục hoành ⇒ y ' = 0 ⇔ [ x = 0 ⇒ y = - 27 x = 3 ⇒ y = 0
Với x = 3,y = 27 ⇒ PTTT là: y = 0 ≡ O x (loại)
Với x = 0, y = -27 ⇒ PTTT là: y = -27.
Vậy có 1 tiếp tuyến thỏa mãn.
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
Đáp án C.
Để thỏa mãn tính chất tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y ' ' x = 0 là một đường thẳng song song với trục hoành thì hàm số phải thỏa mãn điều kiện:
Nghiệm của phương trình y ' ' x = 0 là nghiệm của phương trình y ' x = 0 .
Với A: y ' = 3 x 2 − 6 x + 1 ; y ' ' = 6 x − 6 .
y ' ' = 0 ⇔ x = 1 không là nghiệm của phương trình . y ' = 0 Vậy A không thỏa mãn.
Với B: y ' = 3 x 2 − 6 x − 1 ; y ' ' = 6 x − 6 . Tương tự B không thỏa mãn.
Với C: y ' = 3 x 2 − 6 x + 3 ; y ' ' = 6 x − 6 .
y ' ' = 0 ⇔ x = 1 là nghiệm của phương trình y ' = 0 thỏa mãn, vậy ta chọn C.
Đáp án C
Ta có: y ' = 4 x 3 − 4 x = 0 ⇔ x = 0 ⇒ y = 10 x = ± 1 ⇒ y = 9
Vậy có 2 tiếp tuyến song song với trục hoành là y = 9 ; y = 10.