Giải bất phương trình: C n - 1 n - 3 A n + 1 4 ≤ 1 14 P 3
A. 3 ≤ n ≤ 7
B. n ≥ 7
C. 3 ≤ n ≤ 6
D. n ≥ 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
\(a_n=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Đến đây thay n vào tính S nhé
1: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
=>(x+y)^2>=4xy
=>(x-y)^2>=0(luôn đúng)
2: \(\Leftrightarrow a^3+b^3-a^2b-ab^2>=0\)
=>a^2(a-b)-b^2(a-b)>=0
=>(a-b)^2(a+b)>=0(luôn đúng)
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)
\(b,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)
\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)
Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)
\(\Leftrightarrow P\notinđths\)
Vậy 3 điểm này ko thẳng hàng
1/ a) \(4x^2+4x+5>0\)
<=> \(\left(4x^2+4x+1\right)+4>0\)
<=> \(\left(2x+1\right)^2+4>0\) (bất đẳng thức đúng với mọi x)
b) \(a^2+ab+b^2\)≥ 0
<=> \(2a^2+2ab+2b^2\) ≥ 0
<=> \(\left(a^2+2ab+b^2\right)+a^2+b^2\) ≥ 0
<=> \(\left(a+b\right)^2+a^2+b^{2^{ }}\) ≥ 0 (bất đẳng thức đúng với mọi a,b)
Dấu "=" xảy ra khi a + b = a = b = 0 hay a = b = 0.
2/ A B C D E
[Mình vẽ hình tượng trưng thôi chứ không đúng đâu nhé]
Xét tam giác ABD và tam giác ACE có
Góc A chung
AB = AC (Tam giác ABC cân tại A)
Góc ABD = góc ACE (=góc B/2 = góc C/2)
Suy ra: Tam giác ABD = tam giác ACE (g.c.g)
=> AE = AD (2 cạnh tương ứng)
=> Tam giác AED cân tại A
△ABC cân tại A
=> góc B = (180o - góc A)/2 (1)
△AED cân tại A (cmt)
=> góc AED = (180o - góc A)/2 (2)
Từ (1) và (2) => góc B = góc AED
=> ED //BC
=> Tứ giác BEDC là hình thang
mà góc B = góc C (Tam giác ABC cân tại A)
=> BEDC là hình thang cân.
3/ \(1+x+x^2+x^3=y^3\)
Ta nhận thấy: 1 + x + x2 = \(\left(x+\dfrac{1}{2}\right)^{2^{ }}+\dfrac{3}{4}>0\) với mọi x
nên x3 < 1 + x + x2 + x3 hay x3 < y3 (1)
Xét hiệu (x+2)3 - y3 = (x+2)3 - (1+x+x2+x3) = 5x2 + 11x + 7
= \(5\left(x+\dfrac{11}{10}\right)^{2^{ }}+\dfrac{19}{20}>0\) nên (x+2)3 > y3 (2)
Từ (1) và (2) => x3 < y3 < (x+2)3
=> y3 = (x+1)3 (vì x,y là số nguyên)
hay 1 + x + x2 + x3 = (x+1)3
<=> x2 + x = 0 <=> x(x+1) = 0 <=> x = 0 hoặc x = -1
* Với x = -1 thì y = 1 + (-1) + (-1)2 + (-1)3 = 0
* Với x = 0 thì y = 1 + 0 + 02 + 03 = 1
Vậy Các số nguyên (x;y) cần tìm là (-1;0); (0;1).
4/ \(\left(x^2-\dfrac{25}{4}\right)^2=10x+1\)
<=> \(x^4-\dfrac{25}{2}x^2+\dfrac{625}{16}=10x+1\)
<=> \(x^4-\dfrac{25}{2}x^2-10x+\dfrac{609}{16}=0\)
<=> \(\left(x^4-\dfrac{7}{2}x^3\right)+\left(\dfrac{7}{2}x^3-\dfrac{49}{4}x^2\right)-\left(\dfrac{1}{4}x^2-\dfrac{7}{8}x\right)-\left(\dfrac{87}{8}x+\dfrac{609}{16}\right)=0\)
<=> \(\left(x-\dfrac{7}{2}\right)\left(x^3+\dfrac{7}{2}x^2-\dfrac{1}{4}x-\dfrac{87}{8}\right)=0\)
<=> \(\left(x-\dfrac{7}{2}\right)\left[\left(x^3-\dfrac{3}{2}x^2\right)+\left(5x^2-\dfrac{15}{2}x\right)+\left(\dfrac{29}{4}x-\dfrac{87}{8}\right)\right]=0\)
<=> \(\left(x-\dfrac{7}{2}\right)\left(x-\dfrac{3}{2}\right)\left(x^2+5x+\dfrac{29}{4}\right)=0\)
<=> \(x-\dfrac{7}{2}=0\) hoặc \(x-\dfrac{3}{2}=0\) (vì \(x^2+5x+\dfrac{29}{4}\)≠ 0)
<=> x = 3.5 hoặc x = 1.5.
a: Khi m=4 thì BPT sẽ là 4x-12>x+3
=>3x>15
=>x>5
b: S={x|x>5}