Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)
\(\Leftrightarrow-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{n-1}+\sqrt{n}=11\)
\(\Leftrightarrow\sqrt{n}-1=11\Leftrightarrow\sqrt{n}=12\Leftrightarrow n=144\)
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
Ta có :
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\) chia hết cho 10
Bạn nhấn tổ hợp phím Ctrl + - để thu nhỏ màn hình mới xem được đầy đủ lời giải nhá !
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
a) Vì x.y= -21 suy ra x;y thuộc Ư(21)={ -1,-3,-7,-21,1,3,7,21 }
( rồi em tự suy ra các cặp x,y nhé )
-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm.
-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm.
Ta có : 4n - 5 chia hết cho n - 3
=> 4n - 12 + 17 chia hết cho n - 3
=> 4(n-3) + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\) Ư(17) = {+1;+17}
Với n - 3 = 1 => n = 4
Với n - 3 = -1 =. n = 2
Với n - 3 = 17 => n = 20
Với n - 3 = -17 => n = -14
Vậy n \(\in\) {4;2;20;-14}
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2